SILYLOXYAMINES AS SOURCES OF SILYL RADICALS
(Fig. 1) for the principal emission bands of Hg–Xe lamp i.e.,
l > 300 nm, their efficiency is likely lower than that encountered
with other Type I PIs. SiN2 is better than SiN1 in agreement
with the above-mentioned energetic considerations for a more
efficient Si—Si cleavage process. Under air, as expected in such a
low viscosity matrix,[32–34] the polymerization rate dramatically
drops down. However, interestingly, SiN1 compared to
8-hydroxyjulolidine leads to a significant polymerization process
under air. This behavior is highly worthwhile since many classical
PIs do not allow initiation for these severe conditions. This
evidences the formation of silyl radicals i.e., it is well known that
these species are useful for polymerization in aerated conditions
(to overcome the oxygen inhibition).[32–34]
[6] N. Arsu, G. Hizai, Y. Yagci, Macromol. Rep. 1995, 1257–1262.
[7] I. Kminek, Y. Yagci, W. Schnabel, Polym. Bull. 1992, 29, 277–282.
[8] C. Peinado, A. Alonso, F. Catalina, W. Schnabel, J. Photochem. Photo-
biol. A 2001, 141, 85–91.
[9] J. Lalevee, X. Allonas, J. P. Fouassier, J. Org. Chem. 2007, 72,
6434–6439.
[10] J. Lalevee, M. El-Roz, X. Allonas, J. P. Fouassier, Macromolecules 2007,
40, 8527–8530.
´
[11] J. Lalevee, B. Graff, X. Allonas, J. P. Fouassier, J. Phys. Chem. A 2007,
111, 6991–6998.
´
[12] J. Lalevee, X. Allonas, J.P. Fouassier, J. Am. Chem. Soc. 2002, 124,
9613–9621.
[13] J. Lalevee, A. Dirani, M. El-Roz, X. Allonas, J. P. Fouassier, Macromol-
ecules 2008, 41, 2003–2010.
[14] J. Lalevee, M. El-Roz, X. Allonas, J. P. Fouassier, J. Polym. Sci. A Polym.
Chem. 2008, 46, 2008–2214.
Under visible light (Xe lamp; l > 400 nm), in an aerated matrix,
both the rate of polymerization and final conversion decrease
(Fig. 7 for SiN1). To speed up the polymerization, experiments
were done using SiN1 in the presence of tris(trimethylsilyl)silane
(TTMSS; 1 wt%) already shown as an excellent additive for
photopolymerization under air.[9,32–35] A remarkable enhance-
ment is noted as quite good photopolymerization profiles and
high conversion (ꢁ60%) were obtained (Fig. 7). The better
photoinitiating ability of SiN1 in the presence of TTMSS is full
agreement with previous data on other PI. The ability of TTMSS
[15] J. Lalevee, N. Blanchard, M. El-Roz, B. Graff, X. Allonas, J. P. Fouassier,
Macromolecules 2008, 41, 4180–4186.
[16] J. Lalevee, N. Blanchard, A. C. Chany, M. El-Roz, R. Souane, B. Graff,
X. Allonas, J. P. Fouassier, Macromolecules 2009, 42, 6031–6037.
[17] J. Lalevee, X. Allonas, S. Jradi, J. P. Fouassier, Macromolecules 2006, 39,
1872–1879.
[18] A. Alberti, in Magnetic Properties of Free Radicals: Nitroxide Radicals
and Nitroxide Based High-Spin Systems, Landolt-Bornstein New
Series, Group II, Vol. 26 D (Ed.: H. Fischer,), Springer-Verlag, Berlin,
2005.
[19] C. M. Camaggi, M. J. Perkins, J. Chem. Soc. Perkin Trans. 2 1972, 5,
507–509.
´
to overcome the oxygen inhibition in FRP process is already
[32–34]
[20] J. Lalevee, D. Gigmes, D. Bertin, B. Graff, X. Allonas, J. P. Fouassier,
Chem. Phys. Lett. 2007, 438, 346–350.
described in References
.
[21] D. R. Duling, J. Magn. Reson. B 1994, 104, 105–110.
[22] D. Rehm, A. Weller, Isr. J. Chem. 1970, 8, 256–267.
[23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, V. G. Zakrzewski, A. Montgomery, R. E. Stratmann, Jr, J. C.
Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C.
Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci,
C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y.
Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M.
Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 03, Revision B.02
(2003), Pittsburgh, PA.
[24] C. Chatgilialoglu, Organosilanes in Radical Chemistry, John Wiley &
Sons, New York, 2004.
[25] R. Walsh, Acc. Chem. Res. 1981, 14, 246–252.
[26] T. Shida, Y. Nosaka, T. Kato, J. Phys. Chem. 1978, 82, 695–698.
[27] T. Shida, Electronic Absorption Spectra of Radical Ions, Elsevier Science
Publishers, Amsterdam, New York, 1988.
[28] A. M. Halpern, D. A. Forsyth, M. Nosowitz, J. Phys. Chem. 1986, 90,
2677–2679.
[29] J. C. Scaiano, L. C. Stewart, P. Livant, A. W. Majors, Can. J. Chem. 1984,
62, 1339–1343.
Based on the LFP experiments, silyloxyamines should also work
as Type II PIs. This is exemplified (Fig. 8) by the BP/SiN2 system in
laminated conditions using a polychromatic light exposure
(Xe–Hg lamp). Compared to the BP/EDB reference system, a
remarkable increase of the polymerization rate (Rp) is noted
(Table 4). The direct light absorption by SiN2 leading to a silyl
radical can contribute to the Rp enhancement.
CONCLUSION
In the present paper, the photolysis of two new silyloxyamines
derived from pentamethyldisilane is investigated. Compared to
usual super silyl ethers, they cannot be deprotected upon
photolysis as they do not yield the starting alcohol (the Si—Si
bond is weaker than the Si—O bond). On the opposite, the
generation of the silyl radicals allows the use of these compounds
as PI. Some modifications of the chromophoric group (for
example by introducing more delocalized p systems) should
allow tuning of the absorption towards the visible due to the
charge transfer character of the HOMO–LUMO transition,
enhance the light absorption properties and, hence, the
polymerization ability of these compounds: this new concept
opens up a new way for the design of efficient visible-near UV
absorbing PIs in the radiation curing area.[36–40] This concept
might also be used in nonlinear optics or two-photon absorption
applications.[41–43]
[30] P. K. Das, M. V. Encinas, S. Steenken, J. C. Scaiano, J. Am. Chem. Soc.
1981, 103, 4162–4169.
[31] J. V. Lockard, A. B. Ricks, D. T. Co, M. R. Wasielewski, J. Phys. Chem. Lett.
2010, 1, 215–218.
´
[32] M. El-Roz, J. Lalevee, X. Allonas, J. P. Fouassier, Macromolecules 2009,
42, 8725–8732.
[33] M.A. Tehfe, J. Lalevee, D. Gigmes, J.P. Fouassier, Macromolecules 2010,
´
43, 1364–1370.
[34] M.A. Tehfe, J. Lalevee, D. Gigmes, J.P. Fouassier, J. Polym. Sci. A Polym.
´
Chem. 2010, 48, 1830–1837.
[35] J. Lalevee, N. Blanchard, B. Graff, X. Allonas, J. P. Fouassier, J. Orga-
nomet. Chem. 2008, 693, 3643–3649.
REFERENCES
[36] J. P. Fouassier, Photoinitiation, Photopolymerization and Photocuring:
Fundamental and Applications, Hanser Publishers, New-York, 1995.
[37] J. P. Fouassier, (Ed.). Photochemistry and UV Curing, Research Signpost,
Trivandrum, India, 2006.
[38] J. P. Fouassier, X. Allonas, (Eds). Basics and Applications of Photo-
polymerization Reactions, Research Signpost, Trivandrum, (in press).
[39] R. S. Davidson, Exploring the Science, Technology and Applications of
UV and EB Curing, SITA Technology Ltd., London, 1999.
[1] M. A. Brook, C. Gottardo, S. Balduzzi, M. Mohamed, Tetrahedron Lett.
1997, 38, 6997–7000.
[2] M. A. Brook, S. Balduzzi, M. Mohamed, C. Gottardo, Tetrahedron 1999,
55, 10027–10040.
[3] M. B. Boxer, H. Yamamoto, Org. Lett. 2005, 7, 3127–3128.
[4] M. B. Boxer, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 48–52.
[5] M. B. Boxer, B. J. Albert, H. Yamamoto, Aldrichimica Acta 2009, 42, 3–15.
J. Phys. Org. Chem. 2011, 24 342–350
Copyright ß 2010 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc