T.A. Yousef et al. / Journal of Molecular Structure 1004 (2011) 271–283
283
(4) The positive values of
DH° indicate that the ionization of
Appendix A. Supplementary data
ligands in aqueous solution are endothermic indicating
that the ionization processes are favorable at higher tem-
Supplementary data associated with this article can be found, in
peratures. The negative values of
DH° of the chelation
processes indicating that the processes are exothermic
revealing that the complexation reactions are favorable at
lower temperature.
References
[1] P. Bindu, M.R.P. Kurup, T.R. Satyakeerthy, Polyhedron 18 (1999) 321–331.
[2] M. Joseph, V. Suni, M.R.P. Kurup, M. Nethaji, A. Kishore, S.G. Bhat, Polyhedron
23 (2004) 3069–3080.
[3] D.S. Kalinowski, Y. Yu, P.C. Sharpe, M. Islam, Y.-T. Liao, D.B. Lovejoy, N. Kumar,
P.V. Bernhardt, D.R. Richardson, J. Med. Chem. 50 (2007) 3716–3729.
[4] D.L. Klayman, J.P. Scovill, J. Bruce, F. Bartosevich, J. Med. Chem. 27 (1984) 84–
87.
3.7.2. Determination of stability constants of complexes
The stability constant are evaluated from the formation curves
drawn between n and pL, where n, is the average number of ligand
attached per metal ion and pL is the free ligand exponent, n values
can be calculated [42].
[5] R.P. John, A. Sreekanth, V. Rajakannan, T.A. Ajith, M.R.P. Kurup, Polyhedron 23
(2004) 2549–2559.
[6] S.K. Dutta, D.B. McConVille, W.J. Youngs, M. Chaudhuri, Inorg. Chem. 36 (1997)
2517–2522.
[7] Z. Lu, C. White, A.L. Rheingold, R.H. Crabtree, Inorg. Chem. 32 (1993) 3991–
3994.
[8] M. Joseph, M. Kuriakose, M.R.P. Kurup, E. Suresh, A. Kishore, S.G. Bhat,
Polyhedron 25 (2006) 61–70.
The calculated stability constant values are summarized in Ta-
ble 11. From the data in the tables, one can notice that for all the
studied complexes, logK1 > logK2, i.e., the vacant sites of the metal
ion is more freely available for the binding of the first ligand than
that of the second.
[9] A.E. Liberta, D.X. West, Biometals 5 (1992) 121–126.
[10] I.M. Bazova, R.G. Dubenkon, P.S. Pel’kis, J. Organ. Khimii 14 (1976) 195;
I.M. Bazova, R.G. Dubenkon, P.S. Pel’kis, Chem. Abstr. 84 (1976) 105468w.
[11] L.G. Van Uitert, C. Hass, J. Am. Chem. Soc. 75 (1953) 3651–3654.
[12] N.L. Allinger, J. Am. Chem. Soc. 99 (1977) 8127–8134.
[13] HyperChem version 8.0 Hypercube, Inc., 2002.
[14] I.M. Bazova, R.G. Dubenkon, P.S. Pel’kis, J. Organ. Khimii 14 (1976) 195;
I.M. Bazova, R.G. Dubenkon, P.S. Pel’kis, Chem. Abstr. 84 (1976) 105468w.
[15] D.K. Rastoh, K.C. Sharma, J. Inorg. Nucl. Chem. 36 (1974) 2219–2228.
[16] (a) S.K. Nag, D.S. Joarder, Can. J. Chem. 54 (1976) 2827–2831;
(b) S.K. Sengupta, S.K. Sahni, R.N. Kapoor, Acta Chim. Acad. Sci. Hungary 104
(1990) 89;
(c) R. Roy, M. Chaudhury, S.K. Mondal, K. Nag, J. Chem. Soc. Dalton Trans. 8
(1984) 1681–1687.
[17] A.P. Rebolledo, M. Vieites, D. Gambino, O.E. Piro, E.E. Castellano, C.L. Zani,
E.M.S. Fagundes, L.R. Teixeira, A.A. Batista, H. Beraldo, J. Inorg. Biochem. 99
(2005) 698–706.
[18] A.P. Rebolledo, G.M. De Lima, L.N. Gambi, N.L. Speziali, D.F. Maia, C.B. Pinheiro,
J.D. Ardisson, M.E. Cortès, H. Beraldo, Appl. Organomet. Chem. 17 (2003) 945–
951.
[19] R.F.F. Costa, A.P. Rebolledo, T. Matencio, H.D.R. Calado, J.D. Ardisson, M.E.
Cortès, B.L. Rodrigues, H. Beraldo, J. Coord. Chem. 58 (2005) 1307–1319.
[20] I.C. Mendes, J.P. Moreira, L.N. Speziali, A.S. Mangrich, J.A. Takahashi, H. Beraldo,
J. Braz. Chem. Soc. 17 (8) (2006) 1571–1577.
[21] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1984. 479.
[22] S. Sagdinc, B. Koksoy, F. Kandemirli, S.H. Bayari, J. Mol. Struct. 917 (2009) 63–
70.
ꢀ
Figs. 17S–20S represent the formation curves (nversus pL) of the
studied metal ion–ligand mixtures. The metal–ligand stoichiome-
tric ratios were confirmed by the analyses of the pH-metric titra-
tion curves. All metal ions form 1:1 and 1:2 (M:L) ratios in
ꢀ
solution with the ligands under study as gathered from n;where
ꢀ
n values extend between 0 and 2.
Furthermore, the thermodynamic parameters,
were obtained by linear least square fit of pK against 1/T with an
intercept equals S°/2.303R and a slope of H°/2.303R Figs. 21S–
28S. The free energy ( G°) change due to the complexation can
be estimated using the following relationships:
DH° and DS°
D
D
D
D
Gꢇ ¼
D
Hꢇ ꢀ T
D
Sꢇ
The calculated thermodynamic functions are recorded in Table 12.
An insight on the data reveals the following remarks:
1) The stepwise stability constants decrease with increasing
temperature indication that the complexation processes
are unfavorable with increasing temperature.
2) All
DG° values are indication of spontaneous character of
[23] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68–69.
[24] H.H. Horowitz, G. Metzger, Anal. Chem. 25 (1963) 1464–1468.
[25] M.S. Abu-Bakr, H. Sedaira, E.Y. Hashem, Talanta 41 (10) (1994) 1669–1674.
[26] D. Kara, M. Alkan, Talanta 55 (2001) 415–423.
chelation.
3) The negative values of
DS° indicate that the complexation
processes entropically unfavorable.
[27] A. Broido, J. Polym. Sci. A-2 7 (1969) 1761–1773.
[28] K. Schwetlick, Kinetyczne Metody Badania Mechanizmow Reakcji, PWN
Warszawa (1975).
[29] R.G. Mortimer, Physical Chemistry, Harcourt and Science Technology
Company, Academic Press, San Diego, 2000.
4) The negative values of H° suggest that the chelation pro-
D
cesses are accompanied by generation of heat indicating that
the processes are exothermic revealing that the complexa-
tion reactions are favorable at lower temperature.
[30] S.H. Guzara, Q.H. Jin, Chem. Res. Chin. Univ. 24 (2) (2008) 143–147.
[31] H.T.S. Britton, third ed., Hydrogen Ions, vol. I, Chapman and Hall, London, 1942.
[32] T. Taakeyama, F.X. Quinn, Thermal Analysis Fundamentals and Applications to
Polymer Science, John Wiley and Sons, Chichester, 1994.
[33] P.B. Maravalli, T.R. Goudar, Thermochim. Acta 235 (1999) 35–41.
[34] K.K.M. Yusuff, R. Sreekala, Thermochim. Acta 159 (1990) 357–368.
[35] S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414 (2004) 105–
113.
[36] Clavin, Wilson, J. Am. Chem. Soc. 67 (1945) 2003–2007.
[37] J. Bjerrum, Metal Ammine Formation in Aqueous Solution, P. Hasse and Son,
Copenhagen, 1941.
[38] H.M. Irving, H.S. Rossotti, J. Chem. Soc. (1954) 2904–2910.
[39] A.A. El-Bindary, I.S. Shehatta, E.M. Mabrouk, Monatsh. Chem. 125 (1994) 373–
384.
4. Conclusion
A new series of thiosemicarbazides ligands and their Co(II) com-
plexes, Figs. 2–5, were prepared. Geometry optimization and con-
formational analysis have been performed and the perfect
agreement with spectral studies allowed for suggesting the exact
structure of all studies complexes. The stability of complexes was
explained and kinetic parameters (Ea, A,
D D D
H⁄, S⁄ and G⁄) of all
the thermal decomposition stages have been evaluated using
Coats–Redfern and Horowitz–Metzger methods. Finally, the pro-
tonation and formation constants were calculated using pH metric
studies.
[40] M. Jelikic, D. Veselinovic, P. Djurdevic, Talanta 39 (1992) 665–670.
[41] M.G. Abd El-Wahed, S.M. Metwally, M.M. El-Gamel, S.M. Abd El-Haleem, Bull.
Kor. Chem. Soc. 22 (2001) 663–668.
[42] A. Mcaulery, G.H. Nacollas, J. Chem. Soc. (1961) 2215–2221.