6488
P. Ghosh, A. Mandal / Tetrahedron Letters 53 (2012) 6483–6488
27. Baharami, K.; Khodaei, M. M.; Naali, F. J. Org. Chem. 2008, 73, 6835–6837.
28. Sharghi, H.; Aberi, M.; Doroodmand, M. M. Adv. Synth. Catal. 2008, 350,
2380–2385.
29. Chen, Y. X.; Qian, L. F.; Zhang, W.; Han, B. Angew. Chem., Int. Ed. 2008, 47,
9330–9333.
30. Ghosh, P.; Mandal, A. Catal. Commun. 2011, 12, 743–747. and the references
cited therein.
31. Padalkar, V. S.; Gupta, V. D.; Pathangare, K. R.; Patil, V. S.; Umape, P. G.; Sekar,
N. Green Chem. Lett. Rev. 2012, 5, 139–145.
methodology. In a nutshell, we have developed a green and novel
protocol for the selective synthesis of some heterocyclic com-
pounds using PHP as catalyst at ambient temperature. Explorations
of further applications of the newly developed green protocol and
biological activities of the synthesized compounds are underway in
our laboratory.
32. Wenge, C.; Robert, K. B.; Zohreh, S. H.; Feryan, A.; Jolicia, G. F. Synlett 2012, 23,
247–252.
Acknowledgment
33. For typical example in selective synthesis of 1,2-disubstituted benzimidazoles
using o-phenylenediamine and aldehyde, see: Kokare, N. D.; Sangshetti, J. N.;
Shinde, D. B. Synthesis 2007, 39, 2829–2834.
Financial support from UGC, India was gratefully acknowledged.
34. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Otokesh, S.; Baghbanzadeh, M. Tetrahedron
Lett. 2006, 47, 2557–2560.
Supplementary data
35. Chakrabarty, M.; Mukherjee, R.; Karmakar, S.; Harigaya, Y. Monatsh. Chem.
2007, 138, 1279–1282.
36. Ravi, V.; Ramu, E.; Vljay, K.; Rao, A. S. Chem. Pharm. Bull. 2007, 55, 1254–1257.
37. Yadav, J. S.; Reddy, B. V. S.; Premalatha, K.; Shankar, K. S. Can. J. Chem. 2008, 86,
124–132.
38. Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley,
C. W. Tetrahedron Lett. 2004, 45, 4873–4875.
39. Sithambaram, S.; Ding, Y.; Li, W.; Shen, X.; Gaenzler, F.; Suib, S. L. Green Chem.
2008, 10, 1029–1032.
Supplementary data associated with this article can be found, in
References and notes
1. Erhardt, P. W. J. Med. Chem. 1987, 30, 231–237.
2. Gravalt, G. L.; Baguley, B. C.; Wilson, W. R.; Denny, W. A. J. Med. Chem 1994, 37,
4338–4345.
3. Soderlind, K.-J.; Gorodetsky, B.; Singh, A. K.; Bachur, N.; Miller, G. G.; Loun, J. W.
Anti-Cancer Drug Des. 1999, 14, 19–36.
40. Cho, C. S.; Oh, S. G. J. Mol. Catal. A: Chem. 2007, 276, 205–208.
41. Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2002, 43, 3971–3974.
42. Cho, C. S.; Oh, S. G. Tetrahedron Lett. 2006, 47, 5633–5636.
43. Neochoritis, C.; Stephanidou-Stephanatou, J.; Tsoleridis, C. A. Synlett 2009, 20,
302–305.
4. Kim, J. S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie, E. J. J. Med. Chem 1996, 39,
992–998.
44. Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48,
5371–5375.
5. Roth, T.; Morningstar, M. L.; Boyer, P. L.; Hughes, S. H.; Buckheit, R. W.;
Michejda, C. J., Jr. J. Med. Chem. 1997, 40, 4199–4207.
6. Rasid, M.; Husain, A.; Mishra, R. Eur. J. Med. Chem. 2012, 54, 855–866.
7. Tamura, Y.; Omori, N.; Kouyama, N.; Nishiura, Y.; Hayashi, K.; Watanabe, K.;
Tanaka, Y.; Chiba, T.; Yukioka, H.; Sato, H.; Okuno, T. Bioorg. Med. Chem. 2012,
22, 5498–5504.
45. Wan, J. P.; Gan, S. F.; Wu, J. M.; Pan, Y. Green Chem. 2009, 11, 1633–1637.
46. Gupton, J. T.; Hicks, F. A.; Smith, S. K.; Main, A. D.; Petrich, S. A.; Wilkinson, D.
R.; Sikorski, J. A.; Katritzky, A. R. Tetrahedron 1993, 49, 10205–10209.
47. Freire, M. G.; Neves, C. M. S. S.; Marrucho, I. M.; Coutinho, J. A. P.; Fernandes, A.
M. J. Phys. Chem. A 2010, 114, 3744–3749.
48. Synthesis of polymeric resin bound PF6
À
:
Polymeric resin bound
8. Bai, Y.; Lu, J.; Shi, Z.; Yang, B. Synlett 2001, 11, 544–546.
9. Hasegawa, E.; Yoneoka, A.; Suzuki, K.; Kato, T.; Kitazume, T.; Yangi, K.
Tetrahedron 1999, 55, 12957–12968.
10. Molander, G. A.; Ajayi, K. Org. Lett. 2012, 14, 4242–4245.
11. Bouwman, E.; Driessen, W. L.; Reedjik, J. Coord. Chem. Rev. 1990, 104, 143–172.
12. Pujar, M. A.; Bharamgoudar, T. D. Transition Met. Chem. 1988, 13, 423–425.
13. Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer,
V.; Johnson, E. F.; Frost, D.; Donawho, C.; Jarvis, K.; Bouska, J.; Marsh, K. C.;
Rosenberg, S. H.; Giranda, V. L.; Penning, T. D. Bioorg. Med. Chem. Lett. 2008, 18,
3955–3958.
14. Ogino, Y.; Ohtake, N.; Nagae, Y.; Matsuda, K.; Moriya, M.; Suga, T.; Ishikawa,
M.; Kanesaka, M.; Mitobe, Y.; Ito, J.; Kanno, T.; Ishiara, A.; Iwaasa, H.; Ohe, T.;
Kanatani, A.; Fukami, T. Bioorg. Med. Chem. Lett. 2008, 18, 5010–5014.
15. Shah, D. I.; Sharma, M.; Bansal, Y.; Bansal, G.; Singh, M. Eur. J. Med. Chem. 2008,
43, 1808–1812.
16. Grimmet, M. R. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees,
C. W., Potts, K. T., Eds.; Pergamon Press: New York, 1984; Vol. 5,.
17. Preston, P. N. In Chemistry, of Heterocyclic Compounds; Weissberger, A., Taylor,
E. C., Eds.; John Wiley and Sons: New York, 1981; Vol. 40,.
18. Dudd, L. M.; Venardou, E.; Garcia-Verdugo, E.; Licence, P.; Blake, A. J.; Wilson,
C.; Poliakoff, M. Green Chem. 2003, 5, 187–192.
hexafluorophosphate ion (PHP) was prepared (Scheme 6) by washing
Amberlite 900 resin (ClÀ) packed in a column with 10% aqueous sodium
hexafluorophosphate solution repeatedly until the washing gave a negative
response for the chloride ion (Scheme 6). Finally the solid was washed several
times with water and then dried under vacuum. The binding of
hexafluorophosphate ion on the surface of Amberlite 900 resin was
confirmed by IR spectroscopy.
49. Jian-wen, L.; Xin-hai, L.; Zhi-xing, W.; Hua-jun, G.; Wen-jie, P.; Yun-he, Z.; Qi-
yang, H. Trans. Nonferrous Met. Soc. China 2010, 20, 344–348.
50. General procedure for 1,2-disubstituted benzimidazole: In
experimental procedure, o-phenlylenediamine and benzaldehyde in 1:2
molar ratios was taken in 100 ml round bottom flask. To this water–
a
typical
a
methanol (1:1) and 100 mg PHP was admixed. The reaction mixture was then
allowed to stir with magnetic spinning bar, after some time a yellowish mass
appeared which settles down like a precipitate after the completion of the
reaction (checked by TLC). It was then filtered; the solid reaction mixture was
dissolved with dichloromethane (25 mL) and evaporated under vacuum. The
crude product was then crystallised from ethanol. The desired product was
pure on TLC and characterized by spectral (IR, 1H and 13C NMR) data and
compared to those reported in literature.
51. General procedure for quinoxalines. In a typical experimental procedure, o-
19. Perry, R. J.; Wilson, B. D. J. Org. Chem. 1993, 58, 7016–7021.
20. Brain, C. T.; Brunton, S. A. Tetrahedron Lett. 2002, 43, 1893–1895.
21. Anastasiou, D.; Campi, E. M.; Chaouk, H.; Jackson, W. R. Tetrahedron 1992, 48,
7467–7478.
22. Yang, D. L.; Fokas, D.; Li, J. Z.; Yu, L. B.; Baldino, C. M. Synthesis 2005, 37, 47–56.
23. Wu, Z.; Rea, P.; Wickam, G. Tetrahedron Lett. 2000, 41, 9871–9874.
24. For selected examples in selective synthesis of 2-substituted benzimidazole
using o-phenylenediamine and aldehyde, see: Trivedi, R.; De, S. K.; Gibbs, R. A.
J. Mol. Catal. A: Chem. 2006, 245, 8–11.
phenlylenediamine and
a-bromo ketone in 1:1 molar ratios was taken in a
100 mL round bottom flask. To this water–methanol (1:1) and 100 mg PHP was
admixed. The reaction mixture was then allowed to stir with magnetic
spinning bar, after some time a yellowish mass appeared which settles down
like a precipitate after the completion of the reaction (checked by TLC). It was
then filtered; the solid reaction mixture was dissolved with dichloromethane
(25 mL) and evaporated under vacuum. The crude product was then
crystallised from ethanol. The desired product was pure on TLC and
characterized by spectral (IR, 1H and 13C NMR) data and compared to those
reported in literature.
25. Beaulieu, P. L.; Hache, B.; Von, E.; Moos, V. Synthesis 2003, 35, 1683–1692.
26. Bahrami, K.; Khodaei, M. M.; Kavianinia, I. Synthesis 2007, 39, 547–550.