Zinc Complexes with 3,5-Dimethylpyrazole and Carboxylate Ligands
[10] C. Janiak, J. Chem. Soc., Dalton Trans. 2001, 2781.
[11] A. Y. Robin, K. M. Fromm, Coord. Chem. Rev. 2006, 250, 2127.
[12] J. C. Bayon, P. Esteban, G. Net, P. G. Rasmussen, K. N. Baker,
C. W. Hahn, M. M. Gumz, Inorg. Chem. 1991, 30, 2572.
[13] N. Kitajma, K. Fujisawa, Y. Moro-Oka, Inorg. Chem. 1990, 29,
3657.
slightly distorted tetrahedral arrangement with the mean trans
angles in the range 112.3–113.7°. The carboxylate functions
act as monodentate ligands. The strong structural propensity
toward tetracoordination seems to disfavor the formation of
“paddlewheel” dimeric complexes.[34,35] The terminally
bonded carboxylate ligands are also involved in the formation
of intramolecular hydrogen bonds with the N–H group of 3,5-
dimethylpyrazole. It is noteworthy that for compounds 2 and
3, even though both contain the aromatic acid ligand, the struc-
tures of the metal coordination complexes are obviously differ-
ent, one is mononuclear containing a [Zn(Hdmpz)2] unit, and
the other is dinuclear containing a [Zn2(μ-dmpz)2(Hdmpz)2]
moiety. The presence of the {Zn(μ-dmpz)}2 core in the species
1, 3, and 4 indicates the propensity of pyrazolate ligands to
form well-defined dinuclear entities with Zn···Zn contacts in
the narrow range of 3.543–3.567 Å. Complexes 1–4 have
abundant intra- and weak intermolecular interactions (includ-
[14] T. N. Donovan, D. E. Williams, J. Banks, R. M. Buchanan, H. R.
Chang, R. J. Web, D. N. Hendrikson, Inorg. Chem. 1990, 29,
1058.
[15] Y. H. Xing, Y. H. Zhang, Z. Sun, L. Ye, Y. T. Xu, M. F. Ge, B. L.
Zhang, S. Y. Niu, J. Biol. Chem. 2007, 282-282, 36.
[16] S. Trofimenko, Prog. Inorg. Chem. 1986, 34, 115.
[17] M. Mohan, M. R. Bond, T. Otieno, C. J. Carrano, Inorg. Chem.
1995, 34, 1233.
[18] B. Machura, M. Jaworska, R. Kruszynski, Polyhedron 2004, 23,
2523.
[19] Y. J. Sun, B. Zhao, P. Cheng, Inorg. Chem. Commun. 2007, 10,
583.
[20] a) S. Trofimenko, Chem. Rev. 1993, 70, 943; b) R. Mukheerjee,
Coord. Chem. Rev. 2000, 203, 151; c) S. Trofimenko, Chem. Rev.
1972, 49, 497.
ing classical hydrogen bonds, C–H···O, C–H···N, C–H···π, and [21] a) J. E. Cosgriff, G. B. Deacon, Angew. Chem. Int. Ed. 1998, 37,
286; b) G. B. Deacon, E. E. Delbridge, B. W. Skelton, A. H.
CH3–π interactions) in their crystals, which lead to the forma-
White, Angew. Chem. Int. Ed. 1998, 37, 2251; c) G. B. Deacon,
tion and stabilization of these 3D network structures.
C. M. Forsyth, A. Gitlits, R. Harika, P. C. Junk, B. W. Skelton,
A. H. White, Angew. Chem. Int. Ed. 2002, 41, 3249; d) I. A.
Guzei, A. G. Baboul, G. P. A. Yap, A. L. Rheingold, H. B.
Acknowledgement
Schlegel, C. H. Winter, J. Am. Chem. Soc. 1997, 119, 3387; e) D.
Pfeiffer, M. J. Heeg, C. H. Winter, Inorg. Chem. 2000, 39, 2377.
We gratefully acknowledge the financial support of the Education Of-
[22] J. R. Perera, M. J. Heeg, H. B. Schlegel, C. H. Winter, J. Am.
fice Foundation of Zhejiang Province (project No. Y201017321) and
Chem. Soc. 1999, 121, 4536.
the financial support of the Zhejiang A & F University Pre-research
Science Foundation (project No. 2009FK63).
[23] a) A. Cingolani, S. Galli, N. Masciocchi, L. Pandolf, C. Pettinari,
A. Sironi, Dalton Trans. 2006, 2479; b) R. Sarma, D. Kalita, J. B.
Baruah, Dalton Trans. 2009, 7428; c) U. P. Singh, P. Tyagi, S.
Pal, Inorg. Chim. Acta 2009, 362, 4403; d) J. Li, Y. H. Xing,
H. Y. Zhao, Z. P. Li, C. Guang Wang, X. Q. Zeng, M. F. Ge,
S. Y. Niu, Inorg. Chim. Acta 2009, 362, 2788.
[24] J. Li, J. H. Zhou, Y. Z. Li, L. H. Weng, X. T. Chen, Z. Yu, Z.
Xue, Inorg. Chem. Commun. 2004, 7, 538.
[25] S. W. Jin, D. Q. Wang, W. Z. Chen, Inorg. Chem. Commun. 2007,
10, 685.
References
[1] B. H. Northrop, Y. R. Zheng, K. W. Chi, P. J. Stang, Acc. Chem.
Res. 2009, 42, 1554.
[2] J. P. Zhang, S. L. Zheng, X. C. Huang, X. M. Chen, Angew.
Chem. Int. Ed. 2004, 43, 206.
[3] N. W. Ockwig, O. DelgadoFriedrichs, M. O’Keeffe, O. M. Yaghi,
Acc. Chem. Res. 2005, 38, 176.
[26] S. W. Jin, W. Z. Chen, Inorg. Chim. Acta 2007, 360, 3756.
[27] S. W. Jin, W. Z. Chen, Polyhedron 2007, 26, 3074.
[28] SMART and SAINT, Bruker AXS Inc., Madison, WI, USA, 2004.
[29] SHELXTL-PC, version 5.03, Siemens Analytical Instruments:
Madison, WI, 1994.
[4] S. P. Wu, C. H. Lee, CrystEngComm 2009, 11, 219.
[5] V. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, CrystEng-
Comm 2004, 6, 378.
[6] B. J. Holliday, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40,
2023.
[30] M. Padmanabhan, S. M. Kumary, X. Y. Huang, J. Li, Inorg.
Chim. Acta 2005, 358, 537.
[7] Y. B. Dong, R. C. Layland, N. C. Pschier, M. D. Smith, U. H.
Bunz, H. C. zur Loye, Chem. Mater. 1999, 11, 1413.
[8] C. Y. Su, A. M. Goforth, M. D. Smith, H. C. zur Loye, Inorg.
Chem. 2003, 42, 5685.
[31] Y. J. Sun, P. Chen, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. W. Shen,
J. Coord. Chem. 2002, 55, 363.
[32] Z. D. Tomic, Z. K. Jacimovic, V. M. Leovac, V. I. Cesljevi, Acta
Crystallogr., Sect. C 2000, 56, 777.
[9] a) Inorganic and Organometallic Polymers II, ACS, Washington,
DC, 1994; b) O. Kahn, C. J. Martinez, Science 1998, 279, 44;
c) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma,
Chem. Rev. 2001, 78, 4071; d) R. Robson, B. F. Abrahams, S. R.
Batten, R. W. Gable, B. F. Hoskins, J. Liu, Supramolecular Archi-
tecture, ACS Publications, Washington, DC, 1992; e) B. Olenyuk,
J. A. Whiteford, A. Fechtenkötter, P. J. Stang, Nature 1999, 398,
796; f) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,
M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
[33] X. M. Chen, Z. T. Xu, X. C. Huang, J. Chem. Soc. Dalton Trans.
1994, 2331.
[34] B. Singh, J. R. Long, F. De Biani, D. Gatteschi, P. Stavropoulos,
J. Am. Chem. Soc. 1997, 119, 7030.
[35] H. L. Chun, D. N. Dybtsev, H. Kin, K. Kim, Chem. Eur. J. 2005,
11, 3521 and references cited therein.
Received: October 20, 2010
Published Online: March 1, 2011
Z. Anorg. Allg. Chem. 2011, 618–625
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
625