1958
Z. Jin et al. / Tetrahedron Letters 52 (2011) 1956–1959
Cl
-
BF4
Cl
N
N
Cl
N
-
N
2BF4
CuIBr
III
-
.
F
Cu Br BF4
-
CuIBr
+
N
F
BF4
+
Cu(I)
N
fast
N
A
reaction
7
O
H
H
Selectfluor
R2
N
R1
N
-
H
1
BF4
Cl
B:
8
Br
O
H
R2
H
CuIII
O
F
B:
N
R1
+ HBF4
or
H
H
CuIII
Br
R2
N
R1
F
4
3
-HF
-CuIBr
O
18OH
O
18O
R2
O
CuIII
H218O
R2
N
R1
R2
N
R1
N
H
R1
H
5
2
6
Scheme 1. Proposed copper(III) mechanism.
gold(III) species in a gold catalyzed oxidative coupling reaction.6
Considering that copper(I) is a stronger reductant compared to
gold(I), we propose that a similar chemistry will occur in copper(I)
species. The copper(I) salt can be oxidized to generate a fluorinated
copper(III) species A and 7 (Scheme 1).14 Then, copper(III) species A
may coordinate with oxygen or nitrogen in 1 to form complex 3 or
4, followed by elimination of HF and copper(I) from 3 or 4 to give
the imine intermediate 5. Compound 5 may react with water to
generate hemiaminal 6; 6 can be further oxidized by A or Selectflu-
or itself to give the final product 2. Considering that copper(III)
species A may not be very stable (isolable only with specific li-
gands), a multi portion addition of CuBr could reduce the decom-
position of A and thus improve the yield of 2 (Table 1, entries 2
and 14). A premixed solution of CuBr and Selectfluor is still active,
albeit it gives lower yields.15
Supplementary data
Supplementary data (the 1H, 13C NMR spectroscopic data, MS
and analytic data of the compounds shown in Tables 1 and 2,
and the detailed description of experimental procedures) associ-
ated with this article can be found, in the online version, at
References and notes
1. Bioactive compounds containing amide group: (a) Maruyama, H. B.; Suhara, Y.;
Suzuki-Watanabe, J.; Maeshima, Y.; Shimizu, N.; Ogura-Hamada, M.; Fujimoto,
H.; Takano, K. J. Antibiot. 1975, 28, 636–647; (b) Suhara, Y.; Maruyama, H. B.;
Kotoh, Y.; Miyasaka, Y.; Yokose, K.; Shirai, H.; Takano, K.; Quitt, P.; Lanz, P. J.
Antibiot. 1975, 28, 648–655; (c) Krohn, K.; Franke, C.; Jones, P. G.; Aust, H. J.;
Draeger, S.; Shulz, B. Liebigs Ann. Chem. 1992, 789–798; (d) Thirkettle, J.;
Alvarez, E.; Boyd, H.; Brown, M.; Diez, E.; Hueso, J.; Elson, S.; Fulston, M.;
Gershater, C.; Morata, M. L.; Perez, P.; Ready, S.; Sanchez-Pulles, J. M.; Sheridan,
R.; Stefanska, A.; Warr, S. J. Antibiot. 2000, 53, 664–669; (e) Ross, L.; Guarino, L.
A. Virology 1997, 232, 105–113.
2. Typical examples of preparation of amide through condensation: (a) Eliel, E. L.;
McBride, R. T.; Kaufmann, St. J. Am. Chem. Soc. 1953, 75, 4291–4296; (b) Ficken,
G. E.; Linstead, R. P. J. Chem. Soc. 1952, 4846–4854.
3. Selected other protocols for preparation of imides: (a) Evans, D. A.; Nagorny, P.;
Xu, R. Org. Lett. 2006, 8, 5669–5671; (b) Schnyder, A.; Indolese, A. F. J. Org.
Chem. 2002, 67, 594–597; (c) Gledhill, A. P.; McCall, C. J.; Threadgill, M. D. J. Org.
Chem. 1986, 51, 3196–3201; (d) Alper, H.; Mahatantila, C. P.; Einstein, F. W. B.;
Willis, A. C. J. Am. Chem. Soc. 1984, 106, 2708–2710; (e) Ochiai, M.; Kajishima,
D.; Sueda, T. Tetrahedron Lett. 1999, 40, 5541–5544; (f) Wang, F.; Liu, H.; Fu, H.;
Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 246–252.
4. Alkylperoxyiodane oxidation: (a) Sueda, T.; Kajishima, D.; Goto, S. J. Org. Chem.
2003, 68, 3307–3310; Aerobic oxidation catalyzed by N-hydroxyphthlimides
and cobalt(II) salt: (b) Minisci, F.; Punta, C.; Recupero, F.; Fontana, F.; Pedulli, G.
F. . J. Org. Chem. 2002, 67, 2671–2676; (c) Wang, J.; Liu, L.; Wang, Y.; Zhang, Y.;
Deng, W.; Guo, Q. Tetrahedron Lett. 2005, 46, 4647–4651; RuO4 oxidation: (d)
Papillon, J. P. N.; Taylor, R. J. K. Org. Lett. 2000, 2, 1987–1990; (e) Altomare, C.;
Carotti, A.; Casini, G.; Cellamare, S.; Ferappi, M.; Gavazzo, E.; Mazza, F.;
Pantaleoni, G.; Giorgi, R. J. Med. Chem. 1988, 31, 2153–2158; (f) Yoshifuji, S.;
Arakawa, Y. Chem. Pharm. Bull. 1989, 37, 3380–3381; O-Iodooxybenzoic acid
(IBX) oxidation: (g) Gorka, A.; Hazai, L.; Szantary, C.; Hada, V.; Szabo, L.;
Szantary, C. Hetereocycles 2005, 65, 1359–1371; Aerobic oxidation catalyzed by
iodine: (h) Nakayama, H.; Itoh, A. Synlett 2008, 675–768; Dess–Martin
Periodinane (DMP) oxidation: (i) Nicolaou, K. C.; Mathison, C. J. N. Angew.
Chem., Int. Ed. 2005, 44, 5992–5997; Chromium(VI) catalyzed periodic acid
oxidation: (j) Xu, L.; Zhang, S.; Trudell, M. L. Chem. Commun. 2004, 1668–1669.
5. (a) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew.
Chem., Int. Ed. 2005, 44, 192–212; (b) Banks, R. E.; Mohialdin-Khaffaf, S. N.; Lal,
G. S.; Sharif, I.; Syvret, R. G. J. Chem. Soc., Chem. Commun. 1992, 595–596.
6. Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B. Angew. Chem., Int. Ed. 2010, 49,
7247.
The proposed mechanism also helps to explain why stoichiom-
etric amounts of copper(I) are needed to complete the reaction.
Selectfluor loses its fluorine to generate 7 after oxidation, 7 has a
free amine which may coordinate with copper(I) to generate a
rather stable copper(I) complex 816 thereby losing its catalytic
activity. In theory, the addition of a ligand with a high affinity for
copper(I) should prevent the oxidation of copper(I) to copper(III)
and thus inhibit the reaction. This hypothesis was supported by
the addition of 1,10-phenanthroline, a strong bidentate ligand to
copper(I), which completely suppressed the reaction.
Alternatively, a single electron transfer (SET) mechanism17–19
can also be a viable mechanism, based on the facts that tertiary
amide 1k (Eq. (2)) can also be oxidized into imide (albeit in low
yield).
Cu(II) salts are well known oxidants in many transformations,20
in our case, the combination of copper(I) bromide and Selectfluor
can oxidize the stable amides into imides21. The broader implica-
tions of this oxidation system, including exploring other metal/
Selectfluor combinations, are being investigated by our group.
Acknowledgment
We are grateful to the National Science Foundation for financial
support (CHE-0809683). We also acknowledge the support pro-
vided by the CREAM Mass Spectrometry Facility (University of Lou-
isville) funded by NSF/EPSCoR grant #EPS-0447479.
7. Han, J.; Xu, B.; Hammond, G. B. J. Am. Chem. Soc. 2010, 132, 916–917.