1904
S. H. Lee et al. / Tetrahedron Letters 52 (2011) 1901–1904
tight ion pair
Solvent shell surrounds the ions
O
Bn
ClO2S
SNi
major
O
N
D
O
HN OBn
D
ΙΙa
O
ClO2S
Bn
D
Bn
D
N
O
O
ClO2S N C O
5a
O
ClO2S
Bn
I
N
O
deuterio-1a
D
D
O
SN1
BnO
N
H
minor
delocalized pi bond
5b
solvent separated
loose ion pair
ΙΙb
Figure 2. Proposed reaction pathway (SNi vs SN1).
Kim, I. S.; Li, Q. R.; Lee, J. K.; Lee, S. H.; Lim, J. K.; Zee, O. P.; Jung, Y. H. Synlett
2007, 1711; (e) Kim, I. S.; Lee, H. Y.; Jung, Y. H. Heterocycles 2007, 71, 1787; (f)
Kim, I. S.; Kim, S. J.; Lee, J. K.; Li, Q. R.; Jung, Y. H. Carbohydr. Res. 2007, 342,
1502; (g) Kim, I. S.; Oh, J. S.; Zee, O. P.; Jung, Y. H. Tetrahedron 2007, 63, 2622;
(h) Kim, I. S.; Ji, Y. J.; Jung, Y. H. Tetrahedron Lett. 2006, 47, 7289; (i) Kim, I. S.;
Kim, J. D.; Ryu, C. B.; Zee, O. P.; Jung, Y. H. Tetrahedron 2006, 62, 9349; (j) Kim, J.
D.; Kim, I. S.; Jin, C. H.; Zee, O. P.; Jung, Y. H. Org. Lett. 2005, 7, 4025.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
7. Graul, A.; Castaner, J. Drugs Future 1998, 23, 903.
8. (a) Welch, W. M.; Kraska, A. R.; Sarges, R.; Koe, B. K. J. Med. Chem. 1984, 27,
1508; (b) Williams, M.; Quallich, G. Chem. Ind. (London) 1990, 10, 315; (c)
Johnson, B. M.; Chang, P.-T. L. Anal. Profiles Drug Subst. 1996, 24, 443.
}
1. (a) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008,
}
108, 3795; (b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046; (c) Muller, T.
9. (a) Daluge, S.; Good, S.; Faletto, M.; Miller, W.; Wayne, H.; St. Clair, M.; Boone,
L.; Tisdale, M.; Parry, N.; Reardon, J.; Dornsife, R.; Averett, D.; Krenitsky, T.
Antimicrob. Agents Chemother. 1997, 41, 1082; (b) Faletto, M.; Miller, W.;
Garvey, E.; St. Clair, M.; Daluge, S.; Good, S. Antimicrob. Agents Chemother. 1997,
41, 1099; (c) Foster, R.; Faulds, D. Drugs 1998, 729; (d) Mahony, W. B.; Domin,
B. A.; Daluge, S. M.; Zimmerman, T. P. Biochem. Pharmacol. 2004, 68, 1797.
10. (a) Schmidt, D. D.; Frommer, W.; Müller, L.; Junge, B.; Wingender, W.;
Truscheit, E. Naturwissenschaften 1977, 64, 535; (b) Truscheit, E.; Frommer, W.;
Junge, B.; Müller, L.; Schmidt, D. D.; Wingender, W. Angew. Chem. 1981, 93, 744.
11. General procedure for the reaction of cyclic allylic ether with chlorosulfonyl
isocyanate (CSI): To a mixture of cyclic allylic ether (0.53 mmol) in anhydrous
CH2Cl2 (2 mL, 0.27 M) was added Na2CO3 (1.59 mmol, 300 mol %) at 0 °C under
N2. After being stirred for 20 min, CSI (0.80 mmol, 150 mol %) was slowly
added at 0 °C under N2. The reaction mixture was stirred at indicated
temperature for reaction time (see Tables 1–4), quenched with H2O (10 mL)
when the reaction was completed (TLC monitoring), and then extracted with
EtOAc (25 mL Â 2). The organic layer was added to saturated aqueous solution
of Na2SO3 (10 mL), and the reaction mixture was stirred for 5 h at room
temperature. The organic layer was washed with H2O and brine, dried over
Na2SO4 and concentrated in vacuo. The residue was purified by column
chromatography (n-hexanes/EtOAc) to afford product.
E.; Beller, M. Chem. Rev. 1998, 98, 675; (d) Mitsunobu, O. Synthesis 1981, 1; (e)
Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597; (f) Gibson, M. S.; Bradshaw, R. W.
Angew. Chem., Int. Ed. Engl. 1968, 7, 919; (g) Ragnarsson, U.; Grehn, L. Acc. Chem.
Res. 1991, 24, 285.
2. (a) Chanda, B. M.; Vyas, R.; Bedekar, A. V. J. Org. Chem. 2001, 66, 30; (b) Palomo,
C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Eur. J. Org. Chem. 1999, 3223; (c)
Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
3. (a) Ulrich, H. Chem. Rev. 1965, 65, 369; (b) Graf, R. Angew. Chem., Int. Ed. Engl.
1968, 7, 172; (c) Rasmussen, J. K.; Hassner, A. Chem. Rev. 1976, 76, 389; (d)
Szabo, W. A. Aldrichim. Acta. 1977, 10, 23; (e) Dhar, D. N.; Murthy, K. S. K.
Synthesis 1986, 437.
4. (a) Peng, Z. H.; Woerpel, K. A. Org. Lett. 2001, 3, 675; (b) Roberson, C. W.;
Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 11342; (c) Picard, J. A.; O’Brien, P. M.;
Sliskovic, D. R.; Anderson, M. K.; Bousley, R. F.; Hamelehle, K. L.; Krause, B. R.;
Stanfield, R. L. J. Med. Chem. 1996, 39, 1243.
5. (a) Dong, G. R.; Li, Q. R.; Woo, S. H.; Kim, I. S.; Jung, Y. H. Arch. Pharm. Res. 2008,
31, 1393; (b) Kim, J. D.; Kim, I. S.; Jin, C. H.; Zee, O. P.; Jung, Y. H. Tetrahedron
Lett. 2005, 46, 1079; (c) Jung, Y. H.; Kim, J. D. Arch. Pharm. Res. 2005, 28, 382; (d)
Kim, J. D.; Zee, O. P.; Jung, Y. H. J. Org. Chem. 2003, 68, 3721; (e) Kim, J. D.; Han,
G.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2003, 44, 733; (f) Jung, Y. H.; Kim, J. D.
Arch. Pharm. Res. 2003, 26, 667; (g) Kim, J. D.; Han, G.; Jeong, L. S.; Park, H.-J.;
Zee, O. P.; Jung, Y. H. Tetrahedron 2002, 58, 4395; (h) Jung, Y. H.; Kim, J. D. Arch.
Pharm. Res. 2001, 24, 371; (i) Kim, J. D.; Lee, M. H.; Lee, M. J.; Jung, Y. H.
Tetrahedron Lett. 2000, 41, 5073; (j) Jung, Y. H.; Kim, J. D. Arch. Pharm. Res. 2000,
23, 574.
12. Selected characterization (2a): Rf = 0.14 (n-hexanes/EtOAc = 10/1); mp 66.2 °C;
IR (KBr)
m ;
3313, 3034, 2936, 1685, 1531, 1306, 1241, 1036 cmÀ1 1H NMR
(300 MHz, CDCl3) d 1.49–1.68 (m, 3H), 1.88–2.02 (m, 3H), 4.21–4.23 (m, 1H),
4.70–4.72 (m, 1H), 5.10 (s, 2H), 5.59–5.64 (m, 1H), 5.80–5.86 (m, 1H), 7.28–
7.43 (m, 5H); 13C NMR (75 MHz, CDCl3) d 19.51, 24.67, 29.64, 46.27, 66.49,
127.64, 127.99, 128.05, 128.43, 130.74, 136.54, 155.57; HRMS (EI) Calcd for
6. (a) Kim, I. S.; Li, Q. R.; Dong, G. R.; Kim, Y. C.; Hong, Y. J.; Lee, M.; Chi, K.-W.; Oh,
J. S.; Jung, Y. H. Eur. J. Org. Chem. 2010, 1569; (b) Kim, I. S.; Li, Q. R.; Dong, G. R.;
Woo, S. H.; Park, H.-j.; Zee, O. P.; Jung, Y. H. Synlett 2008, 2985; (c) Kim, I. S.;
Ryu, C. B.; Li, Q. R.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2007, 48, 6258; (d)
C
14H17NO2 [M]+ 231.1259, found 231.1259.