Table 2 DG changes for each processa
Ions
DG1
DG2
DG1*
DG2*
DG1 À DG1*
À10.7
À6.5
À5.5
DG2 À DG2
0.68
4.2
(DG1 À DG1*) À (DG2 À DG2*)
11.4
10.7
13.5
FÀ
À35.4b
À34.5
À27.7
À38.4
À42.3
À36.5
À46.1
À41.0
À33.1
À37.7
À38.1
À28.5
AcÀetate
N3
8.0
a
b
Estimated errors o10%, kJ molÀ1
.
This research was supported by the CBMH at Yonsei
University and the Star Faculty project funded by the Korea
Research Foundation. C.-H. Lee, H. Yoon and P. Kim
acknowledge fellowships from the BK21 program from the
Ministry of Education, Science and Technology, Korea. The
quantum calculations were performed by using the super
computing resource of the Korea Institute of Science and
Technology Information (KISTI).
Fig. 4 The optimized structures for (a) 1, (b) 1*2acetate, and
(c) 1*DABCO.
anion exhibited only 0.68 kJ molÀ1 of energy loss by the
accommodation of DABCO, whereas acetate and azide gave
4.2 and 8.0 kJ molÀ1 of energy loss, respectively. From the
difference between DG1 and DG1*, DABCO-induced energy
gains in the first anion binding also can be calculated. The
smallest fluoride anion exhibited the largest energy gain
(10.7 kJ molÀ1) by the accommodation of DABCO, which
can be explained by the smallest steric repulsion effect.
DABCO-induced energy gains for acetate and azide were
determined as 6.5 and 5.5 kJ molÀ1, respectively. To com-
pensate the steric repulsion effect on the energy gain by the
DABCO accommodation, (DG1 À DG1*) À (DG2 À DG2*)
were again calculated. As a result, similar values were obtained
for all three different anionic guest bindings, indicating that
the energy consumed for conformational optimization of 1 by
DABCO was 11.8 Æ 1.6 kJ molÀ1. The structures of 1,
1*DABCO, and 1*2acetate have been optimized by using
DFT at the B3LYP/6-31G level. As shown in Fig. 4, 1 exhibits
a parallel alignment of two porphyrin moieties with dihedral
angle about 301 against indolocarbazole moieties. The cavity
between two porphyrin moieties is too small to fit guest
molecules. Therefore, space opening between the two porphyrin
moieties should be needed for anionic guest bindings. The
optimized structure of 1*2acetate clearly shows structural
alternation of host molecules. Nevertheless, when the DABCO
binds to 1, two porphyrin moieties should become perfectly
parallel, and indolocarbazole moieties should have a perpendi-
cular alignment against porphyrin moieties. Considering the
optimized structure of 1*DABCO, additional anionic guest
binding may not induce structural alternation of host molecule.
Therefore, after DABCO binding, 1 eventually loses homotropic
allosterism upon anionic guest bindings. In conclusion, we
have designed a new type macrocyclic host for multiple guest
bindings which can simultaneously accommodate anionic
guest as well as DABCO. Upon anionic guest binding, the
host molecule exhibited strong positive homotropic allosterism.
Interestingly, DABCO successfully worked as a heterotopic
modulator for the allosteric anion binding to the host. By the
accommodation of DABCO to the host molecule, the allosteri-
city of anion bindings was greatly decreased. The present
system is therefore an excellent biomimetic model having
homotropic allosterism with an inhibitory control mechanism.
Notes and references
1 (a) C. Miller, Nature, 2006, 440, 484; (b) R. Dutzler, E. B. Campbell
and R. Mackinnon, Science, 2003, 300, 108; (c) R. Dutzler,
E. B. Campbell, M. Cadene, B. T. Chait and R. Mackinnon, Nature,
2002, 415, 287; (d) J. W. Pflugrath and F. A. Quiocho, Nature, 1985,
314, 257; (e) H. Luecke and F. A. Quiocho, Nature, 1990, 347, 402.
2 (a) K.-J. Chang, D. Moon, M. S. Lah and K.-S. Jeong, Angew. Chem.,
Int. Ed., 2005, 44, 7926; (b) K.-J. Chang, B.-N. Kang, M.-H. Lee and
K.-S. Jeong, J. Am. Chem. Soc., 2005, 127, 12214; (c) J.-M. Suk and
K.-S. Jeong, J. Am. Chem. Soc., 2008, 130, 11868; (d) U.-I. Kim,
J.-M. Suk, V. R. Naidu and K.-S. Jeong, Chem.–Eur. J., 2008, 14, 11406.
3 (a) R. C. Cantor and P. R. Schimmel, Biophysical Chemistry,
Part III, Freeman, New York, 1980; (b) T. L. Hill, Cooperativity
Theory in Biochemistry, Springer-Verlag, Berlin, 1984; (c) A. Fersht,
Structure and Mechanism in Protein Science, Freeman, New York,
1999; (d) J. M. Berg, L. Stryer and J. L. Tymoczko, Biochemistry,
Freeman, New York, 5th edn, 2002; (e) M. F. Perutz, Mechanisms of
Cooperativity and Allosteric Regulation in Proteins, Cambridge
University Press, Cambridge, U. K., 1990; (f) A. Livitzki, Quanti-
tative Aspects of Allosteric Mechanism, Springer, Berlin, 1978.
4 (a) G. K. Ackers, M. L. Doyle, D. Myers and M. A. Daugherty,
Science, 1992, 255, 54; (b) Y. Huang, M. L. Doyle and G. K. Ackers,
Biophys. J., 1996, 71, 2094;(c) M. L. Johnson, Methods Enzymol., 2000,
323, 124;(d)J. G.Harman, Biochim.Biophys. Acta,ProteinStruct.Mol.
Enzymol., 2001, 1547, 1; (e) J. Monod, J. Wyman and J.-P. Changeux,
J. Mol. Biol., 1965, 12, 88; (f) J.-P. Changeux and S. J. Edelstein,
Science, 2005, 308, 1424; (g)J.-P. ChangeuxandS. J. Edelstein,Neuron,
1998, 21, 959; (h) M. F. Perutz, G. Fermi, B. Luisi, B. Shaanan and
R. C. Liddington, Acc. Chem. Res., 1987, 20, 309.
5 (a) S. Shinkai, M. Ikeda, A. Sugasaki and M. Takeuchi, Acc. Chem.
Res., 2001, 34, 494; (b) M. Takeuchi, M. Ikeda, A. Sugasaki and
S. Shinkai, Acc. Chem. Res., 2001, 34, 865; (c) P. Thordarson,
R. G. E. Coumans, J. A. A. Elemans, P. J. Thomassen, J. Visser,
A. E. Rowan and R. J. M. Nolte, Angew. Chem., Int. Ed., 2004, 43, 4755;
(d) P. Thordarson, E. J. A. Bijsterveld, J. A. A. Elemans, P. Kasak,
R. J. M. Nolte and A. E. Rowan, J. Am. Chem. Soc., 2003, 125, 1186;
(e) M. Takeuchi, T. Shioya and T. M. Swager, Angew. Chem., Int. Ed.,
2001, 40, 3372; (f) J. L. Sessler, H. Maeda, T. Mizuno, V. M. Lynch and
H. Fruta, J. Am. Chem. Soc., 2002, 124, 13474; (g) J. L. Sessler,
E. Tomat and V. M. Lynch, J. Am. Chem. Soc., 2006, 128, 4184;
(h) T. Ikeda, O. Hirata, M. Takeuchi and S. Shinkai, J. Am. Chem. Soc.,
2006, 128, 16008; (i) C. J. Baylies, T. Riis-Johannessen, L. P. Harding,
J. C. Jeffery, R. Moon, C. R. Rice and M. Whitehead, Angew. Chem.,
Int. Ed., 2005, 44, 6909; (j) J. Setsune and K. Watanabe, J. Am. Chem.
Soc., 2008, 130, 2404; (k) H. Sato, K. Tashiro, H. Shinmori, A. Osuka,
Y. Murata, K. Komatsu and T. Aida, J. Am. Chem. Soc., 2005, 127,
13086; (l) H. Kawai, R. Katoono, K. Nishimura, S. Matsuda,
K. Fujiwara, T. Tsuji and T. Suzuki, J. Am. Chem. Soc., 2004, 126, 5034.
6 C.-H. Lee, H. Yoon and W.-D. Jang, Chem.–Eur. J., 2009, 15, 9972.
7 (a) K. A. Connors, Binging Constants, John Wiley & Sons, New York,
1987; (b) B.-P. Hayman, Acc. Chem. Res., 1986, 19, 90; (c) K. A.
Connors, A. Toledo-Velasquez and D. Paulson, J. Org. Chem., 1988,
53, 2023.
c
4248 Chem. Commun., 2011, 47, 4246–4248
This journal is The Royal Society of Chemistry 2011