complex products, the yields of the final products are acceptable.
The absolute configuration of the products was determined by
X-ray crystal structure analysis of compound 5i.13 Further-
more 5a–j can be used as scaffolds for the synthesis of a broad
range of structurally complex molecules.
4 Selected examples of triple cascade reactions: (a) D. Enders, M. R.
M. Huttl, C. Grondal and G. Raabe, Nature, 2006, 441, 861;
(b) D. Enders, M. R. M Huttl, G. Raabe and J. W. Bats, Adv.
Synth. Catal., 2008, 350, 267; (c) A. Carlone, S. Cabrera,
M. Marigo and K. A. Jørgensen, Angew. Chem., Int. Ed., 2007,
46, 1101; (d) O. Penon, A. Carlone, A. Mazzanti, M. Locatelli,
L. Sambri, G. Bartoli and P. Melchiorre, Chem.–Eur. J., 2008, 14,
4788; (e) G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi,
F. Pesciaioli, M.-P. Song, G. Bartoli and P. Melchiorre, Angew.
Chem., Int. Ed., 2009, 48, 7200; (f) K. Jiang, Z.-J. Jia, S. Chen,
L. Wu and Y.-C. Chen, Chem.–Eur. J., 2010, 16, 2852; Selected
examples of quadruple domino reactions: (g) P. Kotame,
B.-C. Hong and J.-H. Liao, Tetrahedron Lett., 2009, 50, 704;
(h) B.-C. Hong, P. Kotame, C.-W. Tsai and J.-H. Liao, Org. Lett.,
2010, 12, 776; (i) F.-L. Zhang, A.-W. Xu, Y.-F. Gong, M.-H. Wei
and X.-L. Yang, Chem.–Eur. J., 2009, 15, 6815; (j) D. Enders,
C. Wang, M. Mukanova and A. Greb, Chem. Commun., 2010, 46,
2447; (k) K. Jiang, Z.-J. Jia, X. Yin, L. Wu and Y.-C. Chen, Org.
Lett., 2010, 12, 2766.
5 Recent examples from our group: (a) M. Rueping and M. Y. Lin,
Chem.–Eur. J., 2010, 16, 4169; (b) M. Rueping, E. Sugiono and
E. Merino, Chem.–Eur. J., 2008, 14, 6329; (c) M. Rueping,
E. Merino and E. Sugiono, Adv. Synth. Catal., 2008, 350, 2127;
(d) M. Rueping, A. Kuenkel, F. Tato and J. W. Bats, Angew.
Chem., Int. Ed., 2009, 48, 3699; (e) M. Rueping, A. Parra, U. Uria,
F. Besselievre and E. Merino, Org. Lett., 2010, 12, 5680;
(f) M. Rueping and A. Parra, Org. Lett., 2010, 12, 5281;
(g) M. Rueping, A. Kuenkel and R. Frohlich, Chem.–Eur. J.,
2010, 16, 4173.
6 (a) S. L. Schreiber, Science, 2000, 287, 1964; (b) M. D. Burke and
S. L. Schreiber, Angew. Chem., Int. Ed., 2004, 43, 46;
(c) T. E. Nielsen and S. L. Schreiber, Angew. Chem., Int. Ed.,
2008, 47, 48; (d) M. Kaiser, S. Wetzel, K. Kumar and
H. Waldmann, Cell. Mol. Life Sci., 2008, 65, 1186;
(e) C. G. Wermuth, The Practice of Medicinal Chemistry, 3rd
edn, Ch. 9, Academic Press, 2008.
7 W. Wilk, T. J. Zimmermann, M. Kaiser and H. Waldmann, Biol.
Chem., 2010, 391, 491.
8 (a) J. T. Pronk, H. Y. Steensma and J. P. van Dijken, Yeast, 1996,
12, 1607; (b) M. C. Scrutton and M. F. Utter, Annu. Rev. Biochem.,
1968, 37, 249; (c) U. Sauer and B. J. Eikmanns, FEMS Microbiol.
Rev., 2005, 29, 765.
To the best of our knowledge, the quadruple reaction
cascade that we have developed is the first example of a
complex asymmetric cascade reaction in which the course of
the reaction can be controlled by merely changing the substrate
concentration. Similar to enzymatic processes in the metabolism,
it is possible to selectively synthesize the quadruple product 5
or the domino product 4 by simply increasing or decreasing
the aldehyde concentration. With regard to the mechanism,
the quadruple reaction introduced here is an example of
a Lewis base catalyzed iminium–enamine–iminium–enamine
activation sequence.
In summary, we have developed a substrate regulated,
asymmetric, metal-free reaction in which the reaction pathway
can be controlled via the concentration. Depending on the
concentration of the individual substrates, targeted selection
between a double and a quadruple reaction can be made. The
products of both reaction cascades were isolated for a wide
range of substrates in good to very good yields and with
excellent enantioselection.
With the aid of this first example of chemoselective reaction
control through substrate concentration it is possible, with
resourceful reaction planning, to access numerous complex
products with high functional diversity and good stereoselectivity,
using simple educts in only a few reaction steps as is often seen
in nature. This is an example of synthetic chemistry mimicking
nature in its precise reaction control. Therefore, the reaction
presented above is bound to serve as a template for further
studies of efficient reaction control through the substrate
concentration.
9 Recent reviews on HEH: (a) D. Mauzerall and F. H. Westheimer,
J. Am. Chem. Soc., 1955, 77, 2261; (b) C. Wang, X. F. Wu and
J. L. Xiao, Chem.–Asian J., 2008, 3, 1750; (c) M. Rueping,
E. Sugiono and F. R. Schoepke, Synlett, 2010, 852; For a study
on the hydride-donor abilities of HEH see: (d) D. Richter and
H. Mayr, Angew. Chem., Int. Ed., 2009, 48, 1958.
10 (a) J. W. Yang, M. T. H. Fonseca and B. List, Angew. Chem., Int.
Ed., 2004, 43, 6660; (b) S. G. Ouellet, J. B. Tuttle and D. W.
C. MacMillan, J. Am. Chem. Soc., 2005, 127, 32.
We gratefully acknowledge financial support by the European
Research Council (starting grant) as well as the Fonds der
Chemischen Industrie and the Foundation in Memory of Bengt
Lundqvist for stipends given to FRS and HS.
Notes and references
11 Y. Inoue, S. Imaizumi, H. Ito, T. Shinya, H. Hashimoto and
S. Miyano, Bull. Chem. Soc. Jpn., 1988, 61, 3020.
12 Review: S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 1701.
1 Reviews on domino reactions: (a) L. F. Tietze, Chem. Rev., 1996,
96, 115; (b) L. F. Tietze and U. Beifuss, Angew. Chem., Int. Ed.
Engl., 1993, 32, 131; (c) L. F. Tietze, G. Brasche and K. Gericke,
Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim,
2006; (d) H.-C. Guo and J.-A. Ma, Angew. Chem., Int. Ed., 2006,
45, 354.
2 (a) D. J. Ramon and M. Yus, Angew. Chem., Int. Ed., 2005, 44,
1602; (b) J. Zhu and H. Benayme, Multicomponent Reactions,
Wiley-VCH, Weinheim, 2005; (c) D. M. D’Souza and T. J.
J. Mueller, Chem. Soc. Rev., 2007, 36, 1095.
13 For details please see ESIw.
14 For reviews on diphenylprolinol–TMS–ether catalysis see:
(a) C. Palomo and A. Mielgo, Angew. Chem., Int. Ed., 2006, 45,
7876; (b) A. Mielgo and C. Palomo, Chem.–Asian J., 2008, 3, 922;
First application: (c) M. Marigo, T. C. Wabnitz, D. Fielenbach
and K. A. Jørgensen, Angew. Chem., Int. Ed., 2005, 44, 794;
(d) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew.
Chem., Int. Ed., 2005, 44, 4212.
3 Organocatalytic domino reactions: (a) D. Enders, C. Grondal and
M. R. M. Huttl, Angew. Chem., Int. Ed., 2007, 46, 1570; (b) X. Yu
and W. Wang, Org. Biomol. Chem., 2008, 6, 2037; (c) T. Poisson,
Synlett, 2008, 147; (d) A.-N. Alba, X. Companyo, M. Viciano and
R. Rios, Curr. Org. Chem., 2009, 13, 1432; (e) C. Grondal,
M. Jeanty and D. Enders, Nat. Chem., 2010, 2, 167.
15 Reviews for organocatalysis in natural product synthesis:
(a) E. Marques-Lopez, R. P. Herrera and M. Christmann, Nat.
Prod. Rep., 2010, 27, 1138; (b) R. M. de Figueiredo and
M. Christmann, Eur. J. Org. Chem., 2007, 2575; (c) M. J. Gaunt,
C. C. C. Johansson, A. McNally and N. T. Vo, Drug Discovery
Today, 2007, 12, 8.
c
3830 Chem. Commun., 2011, 47, 3828–3830
This journal is The Royal Society of Chemistry 2011