Paper
Organic & Biomolecular Chemistry
intact ON was then plotted against the exposure time to obtain
the ON degradation curve with time.
7 (a) C. Hendrix, H. Rosemeyer, I. Verheggen, F. Seela, A. Van
Aerschot and P. Herdewijn, Chem.–Eur. J., 1997, 3, 110;
(b) A. Van Aerschot, I. Verheggen, C. Hendrix and
P. Herdewijn, Angew. Chem., Int. Ed. Engl., 1995, 34, 1338.
8 (a) R. Steffens and C. J. Leumann, J. Am. Chem. Soc., 1997,
119, 11548; (b) R. Steffens and C. J. Leumann, J. Am. Chem.
Soc., 1999, 121, 3249; (c) D. Renneberg and C. J. Leumann,
J. Am. Chem. Soc., 2002, 124, 5993.
9 (a) M. J. Damha, P. A. Giannaris, P. Marfey and L. S. Reid,
Tetrahedron Lett., 1991, 32, 2573; (b) P. A. Giannaris and
M. J. Damha, Nucleic Acids Res., 1993, 21, 4742;
(c) M. J. Damha, B. Meng, D. Wang, C. G. Yannopoulos and
G. Just, Nucleic Acids Res., 1995, 23, 3967.
10 (a) J. C. Wallace and M. Edmons, Proc. Natl. Acad.
Sci. U. S. A., 1983, 80, 950; (b) I. M. Kerr and R. E. Brown,
Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 256.
11 M. Wasner, D. Arion, G. Borkow, A. Noronha, A. H. Uddin,
M. A. Parniak and M. J. Damha, Biochemistry, 1998, 37,
7478.
Conclusions
A detailed study comprising the 2′–5′ oligonucleotides with
N-type and S-type locked/frozen nucleoside analogues was
undertaken. The results indicate that in the 2′–5′ linked oligo-
mers, the preferred geometry of nucleosides is S-type. More-
over, the S-type frozen ribofluoro uridine nucleoside was
found to exhibit higher stability when flanked by a purine
rather than a pyrimidine at its 2′-end. The stability of these oli-
gomers towards SVPDE is much better compared to the
natural 3′-5′ phosphodiester-linked oligomers, except for a
2′-terminal adenosine-5′-phosphate. Further work with other
nucleosides is currently being carried out in our laboratory.
Acknowledgements
12 B. J. Premraj, P. K. Patel, E. R. Kandimalla, S. Agarwal,
R. V. Hosur and N. Yathindra, Biochem. Biophys. Res.
Commun., 2001, 283, 537.
13 V. Lalitha and N. Yathindra, Curr. Sci., 1995, 68, 68.
14 T. L. Sheppard and R. C. Breslow, J. Am. Chem. Soc., 1996,
118, 9810.
N. E. thanks University Grants Commission, New Delhi for
senior Research Fellowship and V. A. K. thanks Wellcome
Trust UK, and Council of Scientific and Industrial Research,
New Delhi for research grants.
15 (a) T. P. Prakash, K.-E. Jung and C. Switzer, Chem.
Commun., 1996, 1793; (b) K.-E. Jung and C. Switzer, J. Am.
Chem. Soc., 1994, 116, 6059.
Notes and references
1 M. L. Stephenson and P. C. Zamecnik, Proc. Natl. Acad. 16 B. J. Premraj, S. Raja and N. Yathindra, Biophys. Chem.,
Sci. U. S. A., 1978, 75, 285. 2002, 95, 253.
2 P. C. Zamecnik and M. L. Stephenson, Proc. Natl. Acad. 17 (a) M. Polak, M. Manoharan, G. B. Inamati and J. Plavec,
Sci. U. S. A., 1978, 75, 280.
3 (a) S. Dutta, N. Bhaduri, N. Rastogi, S. G. Chandel,
J. K. Vandavasi, R. S. Upadhaya and J. Chattopadhyaya,
Nucleic Acids Res., 2003, 31, 2066; (b) B. J. Premraj, S. Raja,
N. S. Bhavesh, K. Shi, R. V. Hosur, M. Sundaralingam and
N. Yathindra, Eur. J. Biochem., 2004, 271, 2956.
Med. Chem. Commun., 2011, 2, 206; (b) Y.-L. Chiu and 18 S. Y. Wodak, M. Y. Liu and H. W. Wyckoff, J. Mol. Biol.,
T. M. Rana, RNA, 2003, 9, 1034; (c) C. F. Bennet and 1977, 116, 855.
E. E. Swayze, Annu. Rev. Pharmacol., 2010, 50, 259; 19 W. Saenger, in Principles of Nucleic Acid Structure, Springer-
(d) F. Lima, T. P. Prakash, H. M. Murray, G. A. Kinberger, Verlag, New York, 1984.
W. Li, A. E. Chappell, C. S. Li, S. F. Murray, H. Gaus, 20 N. D. Erande, A. D. Gunjal, M. Fernandes and V. A. Kumar,
P. P. Seth, E. E. Swayze and S. T. Crooke, Cell, 2012, 150, 883. Chem. Commun., 2011, 47, 4007.
4 (a) Z. Wang, Methods Mol. Biol., 2011, 676, 51; (b) S. Davis, 21 (a) S. Obika, K.-i. Morio, D. Nanbu and T. Imanishi, Chem.
B. Lollo, S. Freier and C. Esau, Nucleic Acids Res., 2006, 34,
2294.
Commun., 1997, 1643–1644; (b) S. Obika, K.-i. Morio,
D. Nanbu, Y. Hari, I. Hiromi and T. Imanishi, Tetrahedron,
2002, 58, 3039; (c) S. Obika, K.-i. Morio, Y. Hari and
T. Imanishi, Bioorg. Med. Chem. Lett., 1999, 9, 515;
(d) S. Obika, K.-i. Morio, D. Nanbu, Y. Hari and
T. Imanishi, Chem. Commun., 1999, 2423–2424.
5 (a) T. Imanishi and S. Obika, Chem. Commun., 2002, 1653;
(b) C. J. Leumann, Bioorg. Med. Chem., 2002, 10, 841;
(c) P. Herdewijn, Biochim. Biophys. Acta, Gene Struct.
Expression, 1999, 1489, 167; (d) C. Mathé and C. Périgaud,
Eur. J. Org. Chem., 2008, 1489.
22 R. Zou and M. D. Matteucci, Tetrahedron Lett., 1996, 37,
941.
6 (a) A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi,
R. Kumar, M. Meldgaard, C. E. Olsen and J. Wengel, Tetra- 23 H. Hayakawa, F. Takai, H. Tanaka, T. Miyasaka and
hedron, 1998, 54, 3607; (b) S. Obika, D. Nanbu, Y. Hari, K. Yamaguchi, Chem. Pharm. Bull., 1990, 38, 1136.
J.-i. Andoh, K.-i. Morio, T. Doi and T. Imanishi, Tetrahedron 24 I. A. Mikhailopulo, N. E. Poopeiko, T. I. Pricota,
Lett., 1998, 39, 5401; (c) D. A. Braasch and D. R. Corey,
Chem. Biol., 2001, 8, 1; (d) B. Vester and J. Wengel, Biochem-
G. G. Sivets, E. I. Kvasyuk, J. Balzarini and E. De Clercq,
J. Med. Chem., 1991, 34, 2195.
istry, 2004, 43, 13233; (e) M. Koizumi, Biol. Pharm. Bull., 25 N. Zhang, S. Zhang and J. W. Szostak, J. Am. Chem. Soc.,
2004, 27, 453.
2012, 134, 3691–3694.
756 | Org. Biomol. Chem., 2013, 11, 746–757
This journal is © The Royal Society of Chemistry 2013