LETTER
2-Substituted-2,3-dihydro-1H-quinolin-4-one Synthesis
243
OH
O
O
F3CO
F3CO
F3CO
H+, 4 h
+
N
NHAc
1:1
NHAc
H
4d
5
3d
H+, 4 h
Scheme 4 Isolation of a,b-unsaturated ketone intermediate 5 during a cyclization reaction to give quinolin-4-one 4d
unoptimized yield. Reaction with acetophenone required
transmetalation to the organocerate (CeCl3)26,27 to sup-
press enolization but gave propargyl alcohol 3h (R2 = Me,
R3 = Ph) in 60% yield (Scheme 5).
References and Notes
(1) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
(2) Sable, D.; Murakawa, G. J. Dis. Mon. 2004, 50, 381.
(3) Atwal, M. S.; Bauer, L.; Dixit, S. N.; Gearien, J. E.; Morris,
R. W. J. Med. Chem. 1965, 8, 566.
(4) LaMontagne, M. P.; Blumbergs, P.; Smith, D. C. J. Med.
Chem. 1989, 32, 1728.
(5) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.;
Kuo, S.-C.; Hamel, E.; Hackl, T.; Lee, K.-H. J. Med. Chem.
1998, 41, 1155.
R1
O
I
c
a
R2
R3
N
H
NH2
NH2
(6) Zhang, S.-X.; Feng, J.; Kuo, S.-C.; Brossi, A.; Hamel, E.;
Tropsha, A.; Lee, K.-H. J. Med. Chem. 2000, 43, 167.
(7) Ahmed, N.; van Lier, J. E. Tetrahedron Lett. 2006, 47, 2725.
(8) Gong, Y.; Kato, K. J. Fluorine Chem. 2004, 125, 767.
(9) Nemoto, T.; Fukuda, T.; Hamada, Y. Tetrahedron Lett.
2006, 47, 4365.
6 R1 = H
3 R1 = CR2R3OH
O
1f
7
b
R2
R3
Scheme
5 Reagents and conditions: (a) i. TMS-acetylene,
PdCl2(PPh3)2, CuI, PPh3, i-Pr2NH, toluene, r.t., 16 h; ii. KOH,
MeOH–H2O, r.t., 3 h (38%); (b) n-BuLi, THF, –5 °C to r.t. (6 → 3g,
R2 = H, R3 = Ph, 26%) or n-BuLi, CeCl3, THF, –5 °C to r.t. (6 → 3h,
R2 = Me, R3 = Ph, 60%); (c) concd HCl, H2O, 120 °C, 1.5 h (7a,
R2 = H, R3 = Ph, 50%; 7b, R2 = Me, R3 = Ph, 26%).
(10) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org.
Lett. 2005, 7, 5317.
(11) Donnelly, J. A.; Farrell, D. F. Tetrahedron 1990, 46, 885.
(12) Donnelly, J. A.; Farrell, D. F. J. Org. Chem. 1990, 55, 1757.
(13) Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Woodall, D. E.;
Yoganathan, G. Tetrahedron Lett. 2000, 41, 7125.
(14) Kundu, N. G.; Mahanty, J. S.; Das, P.; Das, B. Tetrahedron
Lett. 1993, 34, 1625.
(15) Clarke, I. P.; Meth-Cohn, O. ARKIVOC 2000, (iii), 372.
(16) Majumdar, K. C.; Taher, A.; Ponra, S. Synlett 2010, 735.
(17) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 16, 4467.
(18) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
(19) Ames, D. E.; Bull, D.; Takundwa, C. Synthesis 1981, 364.
(20) Mal’kina, A. G.; Brandsma, L.; Vasilevsky, S. F.; Trofimov,
B. A. Synthesis 1996, 589.
(21) Melissaria, A. P.; Litt, M. H. J. Org. Chem. 1992, 57, 6998.
(22) Although we did not explore this, it is also possible to
synthesize 2-alkynylanilines directly from anilines by C–H
activation at the 2-position, see: Tobisu, M.; Ano, Y.;
Chatani, N. Org. Lett. 2009, 9, 3250.
After heating at 120 °C in concd HCl–H2O (1:1, v/v) as
previously, we were very pleased to observe that quinolin-
4-ones 7a (R2 = H, R3 = Ph) and 7b (R2 = Me, R3 = Ph)
were obtained in 50% and 26% yields, respectively. No
attempt was made to optimize these yields but it is appar-
ent that the process is applicable to the synthesis of quin-
olin-4-ones with alternative substitution patterns at C2.
In conclusion, we have reported a straightforward method
for the preparation of 2-substituted-2,3-dihydro-1H-quin-
olin-4-ones by acid-catalyzed cyclization of 2-(3¢-hydrox-
ypropynyl)anilines. These substrates can be prepared
from readily available 2-bromo-, 2-iodo-, and 2-trifloxy-
anilines or N-acetylanilines via Sonogashira coupling,
making the route attractive for accessing this class of het-
erocycle which is found in many biologically active sub-
stances. For the free aniline substrates ring closure is
postulated to comprise Rupe rearrangement–Donnelly–
Farrell cyclization whereas for the N-acetylanilines it
comprises Rupe rearrangement–acetamide hydrolysis–
Donnelly–Farrell cyclization.
(23) Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 429.
(24) Jacubert, M.; Provot, O.; Peyrat, J.-F.; Hamze, A.; Brion,
J.-D.; Alami, M. Tetrahedron 2010, 66, 3775.
(25) Muthukrishnana, M.; Mujahida, M.; Punitharasua, V.;
Dnyaneshwara, D. A. Synth. Commun. 2010, 40, 1391.
(26) Lord, M. D.; Negri, J. T.; Paquette, L. A. J. Org. Chem.
1995, 60, 191.
(27) Liu, H. J.; Shia, K. S.; Shang, X.; Zhu, B. Y. Tetrahedron
1999, 55, 3803.
Supporting Information for this article comprising full expe-
rimental details and spectroscopic data is available online at http://
(28) General Procedure for the Sonogashira Couplings with
2-Methylbut-3-yn-2-ol (2a)
The iodo-, bromo-, or triflate-substituted aniline was
dissolved in Et3N–pyridine (1:1, 0.1 M), and nitrogen was
bubbled through for 10 min at r.t. 2-Methylbut-3-yn-2-ol (2a
1.5 equiv) was added, and the solution was stirred for 10 min
with nitrogen bubbling through. CuI (0.05 equiv), Ph3P (0.5
equiv), and (PPh3)2PdCl2 (0.05 equiv) were then added, and
the resulting suspension was heated at 90 °C for 1.5–3 h (see
Table 1). The reaction mixture was cooled to r.t. and
quenched with a sat. solution of NaCl. The mixture was then
Acknowledgment
The MRC and CRUK (Grant C2536/A7602) are thanked for grant
support (J.J.P.S., F.P.). We are grateful also to the Nuffield Found-
ation and the EU Erasmus program for provision of project support
(W.H.N., C.B.).
Synlett 2011, No. 2, 241–244 © Thieme Stuttgart · New York