Synthesis of non-symmetrical stilbene analogs of trans-resveratrol
aryl iodide must preferentially have strong electron-withdrawing
groupsthatareattachedtothearylring. Finally, thearyliodidethat
contained two methoxy groups in the meta positions (moderate
electron-withdrawing groups) was evaluated (Table 2, Entry 8).
The reaction with 3,5-dimethoxy-1-iodobenzene in the first Heck
reaction resulted in a 65% yield of the methylated resveratrol,
which is known to be as biologically active as resveratrol itself.
[10] F. Orsini, F. Pelizzoni, B. Bellini, G. Miglierini, Carbohydr. Res. 1997,
301, 95.
[11] M. F. Wang, Y. Jin, C. T. Ho, J. Agric. Food Chem. 1999, 47, 3974.
[12] M. Roberti, D. Pizzirani, D. Simoni, R. Rondanin, R. Baruchello,
C. Bonora,F. Buscemi,S. Grimaudo,M. Tolomeo,J.Med.Chem.2003,
46, 3546.
[13] J. J. Heynekamp, W. M. Weber, L. A. Hunsaker, A. M. Gonzales,
R. A. Orlando, L. M. Deck, D. L. V. Jagt, J. Med. Chem. 2006, 49, 7182.
[14] W. Zhang, M. L. Go, Eur. J. Med. Chem. 2007, 42, 841.
[15] F. Alonso, P. Riente, M. Yus, Tetrahedron Lett. 2009, 50, 3070.
[16] F. Alonso, P. Riente, M. Yus, Eur. J. Org. Chem. 2009, 6034.
[17] K. Ferre-Filmon, L. Delaude, A. Demonceau, A. F. Noels, Coord.
Chem. Rev. 2004, 248, 2323.
Conclusions
[18] S. Eddarir,Z. Abdelhadi,C. Rolando,TetrahedronLett.2001,42,9127.
[19] K. Gaukroger, J. A. Hadfield, L. A. Hepworth, N. J. Lawrence,
A. T. McGown, J. Org. Chem. 2001, 66, 8135.
[20] M. A. Bazin, L. El Kihel, J. C. Lancelot, S. Rault, TetrahedronLett. 2007,
48, 4347.
[21] M. B. Andrus, J. Liu, E. L. Meredith, E. Nartey, Tetrahedron Lett. 2003,
44, 4819.
[22] B. W. Moran, F. P. Anderson, A. Devery, S. Cloonan, W. E. Butler,
S. Varughese, S. M. Draper, P. T. M. Kenny, Bioorg. Med. Chem. 2009,
17, 4510.
In summary, we have developed a sequential and selective
double-Heck arylation of ethylene that produces non-symmetrical
nitro-stilbene analogs of trans-resveratrol at excellent yields. After
the first Heck arylation of ethylene, no isolation or additional
catalyst loading is required for the second Heck arylation. This
protocol was also applied to the synthesis of methylated trans-
resveratrol, which was obtained at a 65% yield over the two Heck
reactions.
[23] M. Guiso, C. Marra, A. Farina, Tetrahedron Lett. 2002, 43, 597.
[24] T. Jeffery, B. Ferber, Tetrahedron Lett. 2003, 44, 193.
[25] D. A. Learmonth, Bioconjugate Chem. 2003, 14, 262.
[26] L. Botella, C. Najera, Tetrahedron 2004, 60, 5563.
[27] Y. M. A. Yamada, K. Takeda, H. Takahashi, S. Ikegami, Tetrahedron
2004, 60, 4097.
[28] A. Farina, C. Ferranti, C. Marra, Nat. Prod. Res. 2006, 20, 247.
[29] H. Lebel, C. Ladjel, L. Brethous, J. Am. Chem. Soc. 2007, 129, 13321.
[30] A. V. Moro, F. S. P. Cardoso, C. R. D. Correia, Tetrahedron Lett. 2008,
49, 5668.
Acknowledgments
We thank CNPq, PRONEX-FAPERGS, and INCT-Catalise for partial
financial support. We also thank CNPq (S.M.N. and M.N.M) for
scholarships.
References
[31] E. Alacid, C. Najera, Arkivoc 2008, 50.
[32] T. Iijima, H. Makabe, Biosci. Biotechnol. Biochem. 2009, 73, 2547.
[33] S. E. Denmark, C. R. Butler, Chem. Commun. 2009, 20.
[34] A. Gordillo, E. de Jesus, C. Lopez-Mardomingo, Chem. Commun.
2007, 4056.
[35] C. M. Kormos, N. E. Leadbeater, J. Org. Chem. 2008, 73, 3854.
[36] T. L. Fletcher, M. J. Namkung, W. H. Wetzel, H. L. Pan, J. Org. Chem.
1960, 25, 1342.
[37] H. H. Jian, J. M. Tour, J. Org. Chem. 2005, 70, 3396.
[38] T. A. Engler, G. A. Gfesser, B. W. Draney, J.Org.Chem. 1995, 60, 3700.
[39] H. F. Sore, C. M. Boehner, S. J. F. MacDonald, D. Norton, D. J. Foxd,
D. R. Spring, Org. Biomol. Chem. 2009, 7, 1068.
[40] B. R. Buckley, S. P. Neary, Adv. Synth. Catal. 2009, 351, 71.
[41] D. Zim, S. M. Nobre, A. L. Monteiro, J. Mol. Catal. A: Chem. 2008, 287,
16.
[1] M. S. Jang, E. N. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas,
C. W. W. Beecher, H. H. S. Fong, N. R. Farnsworth, A. D. Kinghorn,
R. G. Mehta, R. C. Moon, J. M. Pezzuto, Science 1997, 275, 218.
[2] A. M. Rimando, M. Cuendet, C. Desmarchelier, R. G. Mehta,
J. M. Pezzuto, S. O. Duke, J. Agric. Food Chem. 2002, 50, 3453.
[3] S. K. Seppanen, L. Syrjala, K. von Weissenberg, T. H. Teeri,
L. Paajanen, A. Pappinen, Plant Cell Reports 2004, 22, 584.
[4] J. K. Kundu, Y. J. Surh, Cancer Lett. 2008, 269, 243.
[5] F. Orallo, Curr. Med. Chem. 2008, 15, 1887.
[6] S. Kim, H. Ko, J. E. Park, S. Jung, S. K. Lee, Y. J. Chun, J. Med. Chem.
2002, 45, 160.
[7] G. R. Pettit, M. P. Grealish, M. K. Jung, E. Hamel, R. K. Pettit,
J. C. Chapuis, J. M. Schmidt, J. Med. Chem. 2002, 45, 2534.
[8] F. W. Bachelor, A. A. Loman, L. R. Snowdon, Can. J. Chem. 1970, 48,
1554.
[42] C. S. Consorti, M. L. Zanini, S. Leal, G. Ebeling, J. Dupont, Org. Lett.
2003, 5, 983.
[9] S. E. Drewes, I. P. Fletcher, J. Chem. Soc.-Perkin Trans. 1 1974, 961.
c
Appl. Organometal. Chem. 2011, 25, 289–293
Copyright ꢀ 2011 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc