S. Shit et al. / Inorganica Chimica Acta 370 (2011) 18–26
25
1.0
0.8
0.6
0.4
0.2
0.0
complex 3 that can be well reproduced with a simple S = 1/2 dimer
model with J = ꢁ1.38(1) K = ꢁ0.96(1) cmꢁ1, in agreement with the
expected behavior for a dinuclear copper(II) complex with metals
separated by more than 10 Å through the long 4,40-bipyridine
spacer.
2.5
2.0
1.5
1.0
0.5
0.0
Acknowledgments
S.S. gratefully acknowledges Dr. J. Chakroborty, DRDO, Kanpur,
India for his valuable suggestions. S.K.D. and S.M. acknowledge
University Grants Commission, New Delhi, India for financial
assistance. We also acknowledge the European Union (MAGMANet
network of excellence), the Spanish Ministerio de Educación y
Ciencia (Projects MAT2007-61584 and CSD 2007-00010 Consolider-
Ingenio in Molecular Nanoscience) and the Generalitat Valenciana
(Project PROMETEO/2009/095) for funding this research work.
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1
H/T (T.K
)
0
50
100
150
200
250
300
T (K)
Fig. 8. Thermal variation of the vmT product per Cu(II) dimer in compound 3. Inset
shows the isothermal magnetization at 2 K. Solid lines represent the best fit to the
models (see text).
Appendix A. Supplementary material
CCDC 671674, 671675, and 671676 contain the supplementary
crystallographic data for 1, 2, and 3. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
associated with this article can be found, in the online version, at
the molar magnetic susceptibility times the temperature,
vmT at
300 K (0.428 emu K molꢁ1) for the powdered samples of 1 and 2
are close to the spin-only value expected for a S = ½ d9 Cu(II) com-
pound with g = 2.15.
The thermal variation of vmT product for compound 3 shows at
room temperature a value of ca. 0.80 emu K molꢁ1 (Fig. 8), which is
close to that expected for two noninteracting Cu(II), S = 1/2 ions
(0.75 emu K molꢁ1 for g = 2.0). When cooling down the sample,
References
[1] B. Xiao, H. Hou, Y. Fan, M. Tang, Inorg. Chim. Acta 360 (2007) 3019 (and
references therein).
[2] D. Bose, J. Banerjee, S.H. Rahaman, G. Mostafa, H.-K. Fun, R.D.B. Walsh, J.
Zaworotko, B.K. Ghosh, Polyhedron 23 (2004) 2045.
[3] S. Rollas, Sß.G. Küçükgüzel, Molecules 12 (2007) 1910.
[4] S. Abram, C. Maichle-Mössmer, U. Abram, Polyhedron 17 (1998) 131.
[5] G.F. de Sousa, C.A.L. Filgueiras, A. Abras, S.S. Al-Juaid, P.B. Hitchcock, J.F. Nixon,
Inorg. Chim. Acta 218 (1994) 139.
the
temperature
v
mT product remains constant down to ca. 10 K and below this
mT shows a smooth progressive decrease to reach a
v
minimum value of ca. 0.60 emu K molꢁ1 at 2 K (Fig. 8). This behav-
ior for 3 indicates a very weak antiferromagnetic coupling, respon-
sible of the decrease observed at low temperature. According to
the dimeric structure of this compound, we have fit the magnetic
data with the Bleaney and Bowers expression for a simple S = 1/2
dimer (the Hamiltonian is written as H = ꢁJSiSi+1) [70]. This model
reproduces very satisfactorily the magnetic data of 3 in the whole
temperature range with g = 2.0596(5) and J = ꢁ1.38(1) K = ꢁ0.96(1)
cmꢁ1 (solid line in Fig. 8).
[6] D. Wester, G.J. Palenik, Inorg. Chem. 15 (1976) 755.
[7] K. Andjelkovic´, I. Ivanovic´, S.R. Niketic´, B. Prelesnik, V.M. Leovac, Polyhedron 16
(1997) 4221.
ˇ
[8] K. Andjelkovic´, G. Jakovljevic´, M. Zlatovic´, Z. Tešic´, D. Sladic´, J. Howing, R.
Tellgren, J. Serb. Chem. Soc. 69 (2004) 651.
[9] A. Bonardi, C. Merlo, C. Pelizzi, G. Pelizzi, P. Tarasconi, F. Vitali, F. Cavatorta, J.
Chem. Soc., Dalton Trans. (1991) 1063.
A further confirmation of the weak antiferromagnetic coupling
comes from the isothermal magnetization at 2 K that shows a sat-
uration value close to 2 lB (as expected for two noninteracting
S = 1/2 copper(II) ions with g = 2) (inset in Fig. 8) and by the fact
that the isothermal magnetization can be very well reproduced
with a Brillouin function for two S = 1/2 ions with a g value of
[10] G.J. Palenik, D.W. Wester, Inorg. Chem. 17 (1978) 864.
[11] S. Rao, D.D. Mishra, R.V. Mourya, N. Nageswara, Polyhedron 16 (1999) 1825.
[12] E. Fujita, B.S. Brunschwig, T. Ogata, S. Yanagida, Coord. Chem. Rev. 132 (1994)
195.
[13] E. Kimura, S. Wada, M. Shionoya, Y. Okazaki, Inorg. Chem. 33 (1994) 770.
[14] D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chikate, P.B. Sonawane, A.S. Kumbhar,
R.G. Yerande, Coord. Chem. Rev. 123 (1993) 49.
[15] S.K. Sridhar, M. Saravanan, A. Ramesh, Eur. J. Med. Chem. 36 (2001) 615.
[16] B. Bottari, R. Maccari, F. Monforte, R. Ottana, E. Rotondo, M. Vigorita, Bioorg.
Med. Chem. Lett. 10 (2000) 657.
2.134(3) with a weak interaction of ꢁ0.71(1) K = ꢁ0.49(1) cmꢁ1
,
solid line in the inset in Fig. 8.
[17] B. Kaymakciogul, S. Rollas, II Farmaco 57 (2002) 595.
[18] E. Ainscough, A. Brodie, J. Ranford, M. Waters, Inorg. Chim. Acta 236 (1995) 83.
[19] E. Ainscough, A. Brodie, J. Ranford, M. Waters, Inorg. Chim. Acta 267 (1998) 27.
[20] J. Easmon, G. Puerstinger, T. Roth, H. Feibig, M. Jenny, W. Jaeger, G. Heinish, J.
Hofmann, Int. J. Cancer 94 (2001) 89.
The very weak antiferromagnetic coupling observed in complex
3 is in agreement with the expected behavior for a dinuclear cop-
per(II) complex where the metals are separated by more than 10 Å
through the long 4,40-bpy bridge [71–73].
[21] S. Kücükgüzel, S. Rollas, I. Kücükgüzel, M. Kiraz, Eur. J. Med. Chem. 34 (1999)
1093.
[22] L.-M. Wu, H.-B. Teng, X.-B. Ke, W.-J. Xu, J.-T. Su, S.-C. Liang, X.-M. Hu, Chem.
Diversity 4 (2007) 2198.
4. Conclusion
[23] S. Gupta, S. Pal, A.K. Barik, A. Hazra, S. Roy, T.N. Mandal, S.-M. Peng, G.-H. Lee,
M.S. El Fallah, J. Tercero, S.K. Kar, Polyhedron 27 (2008) 2519.
[24] N.M.H. Salem, L. El-Sayed, M.F. Iskander, Polyhedron 27 (2008) 3215.
[25] Z. Xu, L.K. Thompson, D.O. Miller, Polyhedron 21 (2002) 1715.
[26] M.F. Iskander, T.E. Khalil, R. Werner, W. Haase, I. Svoboda, H. Fuess, Polyhedron
19 (2000) 949.
[27] G.-C. Xu, L. Zhang, L. Liu, G.-F. Liu, D.-Z. Jia, Polyhedron 27 (2008) 12.
[28] P.B. Sreeja, M.R.P. Kurup, A. Kishore, C. Jasmin, Polyhedron 23 (2004) 575.
[29] M.F. Iskander, L. El-Sayed, N.M.H. Salem, W. Haase, H.J. Linder, S. Foro,
Polyhedron 23 (2004) 23.
The present study describes the synthesis, spectral, structural
and magnetic characterization of three new Cu(II) complexes with
two Schiff base hydrazones. The X-ray structural analyses identify
the unusual monodentate coordination of pyrazine and 4,40-bipyr-
idine in two cases (complexes 1 and 2) and reveal that the phenolic
–OH side arm in the Schiff base ligand plays a dominant role to ad-
dress the complexes towards mononuclear species and the forma-
tion of polymeric chains achieved through hydrogen bonding
interactions. Magnetic measurements reveal the presence of very
weak antiferromagnetic exchange interactions in the dinuclear
[30] M.F. Iskander, T.E. Khalil, R. Werner, W. Haase, I. Svoboda, H. Fuess, Polyhedron
19 (2000) 1181.
[31] F. Hueso-Ureña, A.L. Peñas-Chamorro, M.N. Moreno-Carretero, J.M. Amigó, V.
Esteve, T. Debaerdemaeker, Polyhedron 18 (1999) 2205.