10.1002/adsc.201900001
Advanced Synthesis & Catalysis
[1] For selected examples, see: a) L. J. Gooßen, G. Deng, L.
M. Levy, Science. 2006, 313, 662-664; b) N. Rodríguez,
L. J. Gooßen, Chem. Soc. Rev. 2011, 40, 5030-5048; c)
R. Shang, D.-S. Ji, L. Chu, Y. Fu, L. Liu, Angew. Chem.
Int. Ed. 2011, 123, 4562-4566; d) J. M. Neely, T. Rovis,
J. Am. Chem. Soc. 2014, 136, 2735-2738; e) K.
Takamatsu, K. Hirano, M. Miura, Angew. Chem. Int. Ed.
2017, 129, 5437-5441; f) F. Pu, L.-Y. Zhang, Z.-W. Liu,
X.-Y. Shi, Adv. Synth. Catal. 2018, 14, 2644-2649; g) S.
Duan, B. Cheng, X. Duan, B. Bao, Y. Li, H. Zhai, Org.
Lett. 2018, 20, 1417-1420; h) S. R. Waetzig, J. A.
Tunge, J. Am. Chem. Soc. 2007, 129, 4138-4139.
Int-2 was formed via coordination of the palladium
acetate to the primary amine and subsequent
electrophilic attack at the C2 position of indole.
Subsequently, the six-membered palladacyclic
intermediate Int 2 underwent an anion exchange with
α-oxocarboxylic acids (2) to generate
a
cyclopalladated complex Int-3 along with release of
HOAc. Decarboxylation of Int-3 followed by
reductive elimination provides acylated compounds
Int-4. Simultaneously, the Pd(0) can be reoxidized to
the active Pd(II) species with (NH4)2S2O8. This
acylated products then cyclized onto the carbonyl
groups followed by dehydration to lead to the desired
product indolo[1,2‑ a]quinazolines.
In summary, an unique and efficient decarboxylative
annulation reaction of 2-(1H-indol-1-yl)anilines with
α-oxocarboxylic acids has been reported via a primary
amine directed C(sp2)-H bond functionalization
process. This transformation is the representative
example of decarboxylative annulation of α-
oxocarboxylic acids by employing directing group
strategy. A wide range of indolo[1,2‑ a]quinazolines
were obtained in moderate to excellent yield.
Significantly, this protocol features exclusive
regioselectivity, step economy and mild reaction
conditions. We anticipate that this strategy may be
applicable for other C-H functionalization/annulation
reactions.
[2] For selected examples, see: a) C. Wang, S. Rakshit, F.
Glorius, J. Am. Chem. Soc. 2010, 132, 14006-14008; b)
Y. Zhang, H. Zhao, M. Zhang, W. Su, Angew. Chem.,
Int. Ed. 2015, 54, 3817-3821; c) X. Qin, D. Sun, Q.
You, Y. Cheng, J. Lan, J. You, Org. Lett. 2015, 17,
1762-1765; d) F. Pan, Z.-Q. Lei, H. Wang, J. Sun, Z.-J.
Shi, Angew. Chem. Int. Ed. 2013, 52, 2063-2067; e) M.
Kim, J. Park, S. Sharma, A. Kim, E. Park, J. Kwak, Y.
Jung, S. Ki, Chem. Commun. 2013, 49, 925-927; f) J.
Miao, H. Ge, Org. Lett. 2013, 15, 2930-2933.
[3] a) R. Chen, R. Chen, L. Zeng, B. Huang, Y. Shen, S.
Cui, Org. Lett. 2018, 20, 3377-3380; b) L.J. Gooßen, F.
Rudolphi, C. Oppel, N. Rodríguez, Angew. Chem. Int.
Ed. 2008, 47, 3043-3045; c) L. J. Gooßen, B.
Zimmermann, T Knauber, Angew. Chem. Int. Ed. 2008,
47, 7103-7106; d) M. Zhang, J. Xi, R. Ruzi, N. Li, Z.
Wu, W. Li, C. Zhu, J. Org. Chem. 2017, 82, 9305-9311;
e) Z. Zhu, X. Tang, J. Li, X. Li, W. Wu, G. Deng, H.
Jiang, Chem. Commun. 2017, 53, 3228-3231; f) S.
Yang,H. Tan, W. Ji, X. Zhang, P. Li, L. Wang, Adv.
Synth. Catal. 2017, 359, 443-453; g) W.-M. Cheng, R.
Shang, H.-Z. Yu, Y. Fu, Chem. Eur. J. 2015, 21, 13191-
13195; h) H. Tan, W. Ji, L. Wang, Angew. Chem. Int.
Ed. 2015, 54, 8374-8377.
Experimental Section
Typical Experimental Procedure for Product 3
A mixture of 0.2 mmol of 2-(1H-indol-1-yl)anilines (1), 0.4
mmol of α-oxocarboxylic acids (2), 0.4 mmol (NH4)2S2O8,
5 mol % of Pd(OAc)2, and 2.0 mL of diglyme were added
to a test tube equipped with a magnetic stirring bar. The
[4] a) S. Sharma, A. Kim, E. Park, J. Park, M. Kim, J. H.
Kwak, S. H. Lee, Y. H. Jung, I. S. Kim, Adv. Synth.
Catal. 2013, 355, 667-672; b) H. Li, P. Li, H. Tan, L.
Wang, Chem. Eur. J. 2013, 19, 14432-14436; c) Y. Wu,
L. Sun, Y. Chen, Q. Zhou, J.-W. Huang, H. Miao, H.-B.
Luo, J. Org. Chem. 2016, 81, 1244-1250; d) M. Li, H.
Ge, Org. Lett. 2010, 12, 3464-3467; e) H. Cai, D. Li, Z.
Liu, G. Wang, Acta Chim. Sinica. 2013, 71, 717-721; f)
K. Jing, J.-P. Yao, Z.-Y. Li, Q.-L. Li, H.-S. Lin, G.-W.
Wang, J. Org. Chem. 2017, 82, 12715-12725; g) A.-L.
Li, Z.-Y. Li, G.-W. Wang, ACS Omega. 2018, 3, 4187-
4198.
o
mixture was then stirred at 78 C under air for 12 h. After
the reaction was completed (monitored by TLC), the
resulting mixture were cooled to room temperature and
extracted with ethyl acetate. The combined organic layers
were evaporated under vacuum. The desired products 3
were obtained in the corresponding yields after purified by
column chromatography on silica gel with mixture of
petroleum ether and ethyl acetate.
[5] a) F. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43,
6906-6919; b) Z. Chen, B. Wang, J. Zhang, W. Yu, Z.
Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295;
c) C. Zhou, P. Li, X. Zhu, L. Wang, Org. Lett. 2015, 17,
6198-6201; d) M. Ki, N. K. Mishra, J. Park, S. Han, Y.
Shin, S. Sharma, Y. Lee, E.-K. Lee, J. H. Kwak, I. S.
Kim, Chem. Commun. 2014, 50, 14249-14252.
Acknowledgements
This work was supported by the Ph. D. Scientific Research
Foundation of Guilin University of Technology and Guangxi
Natural Science Fundation (2017GXNSFBA198224 and
2018GXNSFAA281203) and Key Laboratory of Electrochemical
and Magneto-chemical Function Materials.
[6] P. Fang, M. Li, H. Ge, J. Am. Chen. Soc. 2010, 132,
11898-11899.
References
4
This article is protected by copyright. All rights reserved.