L. A. Adrio, K. K. Hii
SHORT COMMUNICATION
(92 mg, 85%). IR (liquid film): νmax = 2959, 2928, 1706, 1412, 1290,
(dt, J = 7.8, 4.0 Hz, 1 H, CHO), 2.77–2.62 (m, 1 H, CHMe), 2.33–
2.13 (m, 2 H, CH2), 1.77–1.24 (m, 8 H, 4 CH2), 1.12 (d, J = 6.4 Hz,
3 H, CHMe), 0.89 (t, J = 6.8 Hz, 3 H, CH2Me) ppm. 13C NMR
˜
1
929, 747 cm–1. H NMR: (400 MHz, CDCl3): δ = 11.4 (br. s, 1 H,
OH), 5.34 (dt, J = 11.0, 7.4 Hz, 1 H, CH=), 5.19 (tt, J = 11.0,
1.5 Hz, 1 H, =CH), 3.13–2.93 (m, 1 H, CHMe), 2.43–2.22 (m, 2 (101 MHz, CDCl3): δ = 176.7, 87.5, 37.1, 36.1, 33.99, 31.6, 25.4,
H, CH2), 2.43–2.02 (m, 2 H, CH2), 1.41–1.28 (m, 4 H, 2 CH2), 1.07
(d, J = 6.8 Hz, 3 H, CHMe), 0.92 (t, J = 6.8 Hz, 3 H, CH2Me)
ppm. 13C NMR (101 MHz, CDCl3): δ = 179.0, 133.3, 130.1, 41.9,
31.9, 28.9, 27.1, 22.3, 21.0, 14.0 ppm. HRMS (CI, NH3): calcd. for
C10H22NO2 188.1651, found 188.1653[MNH4]+.
22.5, 17.5, 14.0 ppm. MS (CI, NH3): m/z = 188 [MNH4]+.
(؎)-trans-5-Hexyl-4-methyldihydrofuran-2(3H)-one (7c):[16] Colour-
1
less oil. H NMR (400 MHz, CDCl3): δ = 4.04 (dt, 1 H, J = 7.8,
3.9 Hz, CHO), 2.79–2.62 (m, 1 H, CHMe), 2.34–2.13 (m, 2 H,
CH2), 1.77–1.22 (m, 10 H, 5 CH2), 1.13 (d, 3 H, J = 6.4 Hz,
CHMe), 0.91 (t, 3 H, J = 6.8 Hz, CH2Me) ppm. 13C NMR
(101 MHz, CDCl3): δ = 176.6, 87.5, 37.1, 36.1, 34.0, 31.6, 29.5,
25.7, 22.5, 17.5, 14.0 ppm.
(Z)-3-Methyldec-4-enoic Acid (4c): Prepared from 3c (100 mg,
0.54 mmol). Purified by column chromatography using 25%
EtOAc/hexane, which afforded the product as a transparent oil
(93 mg, 86%). IR (liquid film): νmax = 2958, 2926, 1706, 1410, 1292,
˜
Supporting Information (see footnote on the first page of this arti-
cle): IR and NMR (1H and 13C) spectra of all intermediates and
products, an example of how product distribution is determined by
1H NMR integration, and NOE experiments with trans-7a and 7b.
969 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.35 (dt, J = 11.0,
7.6 Hz, 1 H, CH=), 5.20 (tt, J = 11.0, 1.5 Hz, 1 H, =CH), 3.12–
2.94 (m, 1 H, CHMe), 2.41–2.23 (m, 2 H, CH2), 2.14–2.03 (m, 2
H, CH2), 1.48–1.12 (m, 6 H, 3 CH2), 1.12–0.96 (d, J = 6.8 Hz, 3
H, CHMe), 0.92 (t, J = 6.8 Hz, 3 H, CH2Me) ppm. 13C NMR
(101 MHz, CDCl3): δ = 179.0, 133.3, 130.2, 126.9, 41.9, 31.5, 29.4,
27.3, 22.6, 21.0, 14.1 ppm. HRMS (CI, NH3): calcd. for
C11H24NO2 202.1807, found 202.1804 [MNH4]+.
Acknowledgments
We thank the Xunta Galicia (Angeles Alvariño program) for a
postdoctoral fellowship to L. A. A. We are also grateful to Dr.
Martin Heeney (Imperial College London) for providing access to
his microwave equipment.
(Z)- and (E)-3,7-Dimethylocta-4,6-dienoic Acid (4d): Obtained from
3d (0.22 g, 1.43 mmol). Purified by column chromatography using
25% EtOAc/hexane to yield a inseparable mixture of (Z) and (E)
isomers as a transparent oil (175 mg, 73%). IR (liquid film): ν
˜
max
= 2966, 2927, 1705, 1410, 1291, 1208, 957, 757 cm–1. 1H NMR
(400 MHz, CDCl3): (Z) isomer: δ = 6.05–6.19 (m, 2 H, CH=), 5.13
(t, J = 10.0 Hz, 1 H, =CH), 3.24–3.06 (m, 1 H, CHMe), 2.43–2.27
(m, 2 H, CH2), 1.79 (s, 3 H, Me), 1.75 (s, 3 H, Me), 1.06 (d, J =
6.7 Hz, 3 H, CHMe); (E) isomer: δ = 6.26 (dd, J = 15.1, 10.0 Hz,
1 H, =CH), 5.78 (d, J = 10.0 Hz, 1 H, CH=), 5.48 (dd, J = 15.1,
7.5 Hz, 1 H, =CH), 2.81–2.63 (m, 1 H, CHMe), 2.47–2.24 (m, 2
H, CH2), 1.74 (s, 6 H, 2 Me), 1.09 (d, J = 6.7 Hz, 3 H, CHMe)
ppm. 13C NMR (101 MHz, CDCl3, mixture of isomers): δ = 178.8,
136.3, 134.8, 134.3, 132.5, 125.8, 124.7, 124.4, 120.0, 41.8, 41.65,
33.6, 29.0, 26.3, 25.9, 20.85, 20.3, 18.25, 18.1 ppm. MS (TOF, ES):
m/z = 167 [M – H]–.
[1] The Chemistry of Fragrances (Eds.: D. H. Pybus, C. S. Sell),
The Royal Society of Chemistry, U.K., 1999.
[2] For selected examples (synthesis of trans-lactones), see: a) X.
Jiang, C. Fu, S. Ma, Eur. J. Org. Chem. 2010, 687–693; b) M.
Ozeki, D. Hashimoto, K. Nishide, T. Kajimoto, M. Node, Tet-
rahedron: Asymmetry 2005, 16, 1663–1671; c) F. Schleth, T.
Vogler, K. Harms, A. Studer, Chem. Eur. J. 2004, 10, 4171–
4185; d) K. Suzuki, M. Shoji, E. Kobayashi, K. Inomata, Tet-
rahedron: Asymmetry 2001, 12, 2789–2792; e) F. Benedetti, C.
Forzato, P. Nitti, G. Pitacco, E. Valentin, M. Vicario, Tetrahe-
dron: Asymmetry 2001, 12, 505–511; f) H. Nishikori, K. Ito, T.
Katsuki, Tetrahedron: Asymmetry 1998, 9, 1165–1170.
[3] a) L. A. Adrio, K. K. Hii, Chem. Commun. 2008, 2325–2327;
b) J. G. Taylor, N. Whittall, K. K. Hii, Chem. Commun. 2005,
5103–5105.
[4] L. A. Adrio, L. S. Quek, J. G. Taylor, K. K. Hii, Tetrahedron
2009, 65, 10334–10338.
[5] K. Shimoda, N. Kubota, T. Hirata, Y. Kondo, H. Hamada,
Tetrahedron Lett. 2007, 48, 1345–1347.
[6] T. Ohta, T. Miyake, N. Seido, H. Kumobayashi, H. Takaya, J.
Org. Chem. 1995, 60, 357–363.
[7] M. Ostermeier, B. Brunner, C. Korff, G. Helmchen, Eur. J. Org.
Chem. 2003, 3453–3459.
[8] M. Shibuya, T. Sato, M. Tomizawa, Y. Iwabuchi, Chem. Com-
mun. 2009, 1739–1741.
[9] a) A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Pian-
catelli, J. Org. Chem. 1997, 62, 6974–6977; b) J. B. Epp, T. S.
Widlanski, J. Org. Chem. 1999, 64, 293–295.
[10] L. Coulombel, E. Duñach, Synth. Commun. 2005, 35, 135–160.
[11] D. D. Zope, S. G. Patnekar, V. R. Kanetkar, Flavour Fragrance
J. 2006, 21, 395–399.
[12] L. Coulombel, F. Grau, M. Weïwer, I. Favier, X. Chaminade,
A. Heumann, J. C. Bayón, P. A. Aguirre, E. Duñach, Chem.
Biodiversity 2008, 5, 1070–1082.
[13] L. Coulombel, M. Rajzmann, J.-M. Pons, S. Olivero, E. Duñ-
ach, Chem. Eur. J. 2006, 12, 6356–6365.
[14] C. G. Yang, N. W. Reich, Z. Shi, C. He, Org. Lett. 2005, 7,
4553–4556.
[15] G. Kunesch, P. Zagatti, J. Y. Lallemand, A. Debal, J. P. Vig-
neron, Tetrahedron Lett. 1981, 22, 5271–5274.
[16] A. J. Pratt, E. J. Thomas, J. Chem. Soc. Perkin Trans. 1 1989,
1521–1527.
General Procedure for Cyclization Reactions: A Radley’s reaction
tube was charged with a magnetic stir bar, and a mixture of the
requisite (Z)-alkenoic acid (1 mmol), copper(II) triflate
(0.05 mmol, 5 mol-%) or triflic acid (8.8 μL, 0.1 mmol, 10 mol-%)
and 1,2-dichloroethane (2 mL) was added. The vessel was fitted
with a Teflon screwcap, placed in the reaction carousel and heated
at reflux for the required length of time. After cooling, the solvent
was removed under reduced pressure to furnish a residue, which
was purified by column chromatography (EtOAc/hexane, 1:4). The
trans-7 isomer always eluted first, followed by cis-7[24–25] (insuf-
ficient quantity for characterisation), and finally a mixture of the
cis/trans-6 products. Alternatively, these reactions were performed
under microwave radiation in DCE at 150 °C by using a Biotage
Initiator 2.5 instrument.
(؎)-trans-3-Methyl-4-octanolide, trans-Whisky Lactone (7a):[26]
Colourless oil. IR (liquid film): ν
= 2960, 2935, 1773, 1459,
˜
max
1210, 1171, 983, 926 cm–1. H NMR (400 MHz, CDCl3): δ = 4.01
(dt, J = 7.8, 4.0 Hz, 1 H, CHO), 2.75–2.57 (m, 1 H, CHMe), 2.30–
2.13 (m, 2 H, CH2), 1.74–1.26 (m, 6 H, 3 CH2), 1.13 (d, J = 6.4 Hz,
3 H, CHMe), 0.90 (t, J = 6.7 Hz, 3 H, CH2Me) ppm. 13C NMR
(101 MHz, CDCl3): δ = 176.7, 87.5, 37.2, 36.1, 33.7, 27.9, 22.5,
17.5, 13.9 ppm. m/z (CI, NH3) 174 [MNH4]+.
1
(؎)-trans-3-Methyl-4-nonanolide, trans-Cognac Lactone (7b):[27]
Colourless oil. IR (liquid film): ν
= 2958, 2932, 1778, 1459,
˜
max
1207, 1169, 1001, 937 cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.03
1856
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 1852–1857