Journal of the American Chemical Society
Article
Chem. Soc. 2006, 128, 11332. (i) Prakash, R.; Bora, B. R.; Boruah, R.
C.; Gogoi, S. Ru(II)-Catalyzed C−H Activation and Annulation
Reaction via Carbon−Carbon Triple Bond Cleavage. Org. Lett. 2018,
20, 2297.
Azidoallyl Alcohols. Angew. Chem., Int. Ed. 2014, 53, 5305. (b) Liu,
Z.; Liao, P.; Bi, X. General Silver-Catalyzed Hydroazidation of
Terminal Alkynes by Combining TMS-N3 and H2O: Synthesis of
Vinyl Azides. Org. Lett. 2014, 16, 3668.
(4) For the synthesis of carbocycles, see: (a) Miyanohana, Y.;
Chatani, N. Skeletal Reorganization of Enynes Catalyzed by InCl3.
Org. Lett. 2006, 8, 2155. (b) Li, H.; Hao, W.-J.; Wang, M.; Qin, X.;
Tu, S.-J.; Zhou, P.; Li, G.; Wang, J.; Jiang, B. Catalytic Double [2 + 2]
Cycloaddition Relay Enabled C−C Triple Bond Cleavage of Yne−
Allenones. Org. Lett. 2018, 20, 4362.
(11) Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X. Silver-
Catalyzed Stereoselective Aminosulfonylation of Alkynes. Angew.
Chem., Int. Ed. 2017, 56, 13805.
(12) For a review, see: (a) Bakulev, V. A.; Beryozkina, T.; Thomas,
J.; Dehaen, W. The Rich Chemistry Resulting from the 1,3-Dipolar
Cycloaddition Reactions of Enamines and Azides. Eur. J. Org. Chem.
2018, 2018, 262. See also: (b) Iminov, R. T.; Mashkov, A. V.; Chalyk,
B. A.; Mykhailiuk, P. K.; Tverdokhlebov, A. V.; Tolmachev, A. A.;
Volovenko, Y. M.; Shishkin, O. V.; Shishkina, S. V. A Convenient
Route to 1-Alkyl-5-trifluoromethyl-1,2,3-triazole-4-carboxylic Acids
Employing a Diazo Transfer Reaction. Eur. J. Org. Chem. 2013, 2013,
2891. (c) Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A Metal-
Free Multicomponent Cascade Reaction for the Regiospecific
Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. Angew. Chem., Int. Ed.
2013, 52, 13265. (d) Wan, J.-P.; Cao, S.; Liu, Y. A Metal- and Azide-
Free Multicomponent Assembly toward Regioselective Construction
of 1,5-Disubstituted 1,2,3-Triazoles. J. Org. Chem. 2015, 80, 9028.
For a seminal publication, see: (e) Fusco, R.; Bianchetti, G.; Pocar,
D.; Ugo, R. Versuche im Enamingebiet, VII. Reaktionen von
Arylsulfonylaziden mit Enaminen aus Ketomethylenverbindungen.
Chem. Ber. 1963, 96, 802.
(13) For examples of the amidination of N-protected enamines with
sulfonyl azides, see: (a) Gao, T.; Zhao, M.; Meng, X.; Li, C.; Chen, B.
Facile Synthesis of Sulfonyl Amidines and β-Amino Sulfonyl
Enamines under Transition-Metal-Free Conditions. Synlett 2011,
2011, 1281. (b) Xu, Y.; Wang, Y.; Zhu, S. Reactions of Per(poly)-
Fluoroalkanesulfonyl Azides with β-ketoester Enamines, A New Route
to N-Per(poly)Fluoroalkanesulfonyl Amidines. J. Fluorine Chem.
2000, 104, 195. (c) Contini, A.; Erba, E.; Pellegrino, S. Multi-
component Synthesis of Pentyl-Sulfonyl Amidines via Diazoalkane.
Synlett 2012, 23, 1523. (d) Xu, X.; Li, X.; Ma, L.; Ye, N.; Weng, B. An
Unexpected Diethyl Azodicarboxylate-Promoted Dehydrogenation of
Tertiaryamine and Tandem Reaction with Sulfonyl Azide. J. Am.
Chem. Soc. 2008, 130, 14048. (e) Xu, X.; Ge, Z.; Cheng, D.; Ma, L.;
Lu, C.; Zhang, Q.; Yao, N.; Li, X. CuCl/CCl4-Promoted Convenient
Synthesis of Sulfonyl Amidines from Tertiary Amines and Sulfonyl
Azides. Org. Lett. 2010, 12, 897. (f) Kumar, Y. K.; Kumar, G. R.;
Reddy, T. J.; Sridhar, B.; Reddy, M. S. Synthesis of 3-Sulfonylamino
Quinolines from 1-(2-Aminophenyl)Propargyl Alcohols through a
Ag(I)-Catalyzed Hydroamination, (2 + 3) Cycloaddition, and an
Unusual Strain-Driven Ring Expansion. Org. Lett. 2015, 17, 2226.
(14) (a) Duerfeldt, A. S.; Boger, D. L. Total Syntheses of
(−)-Pyrimidoblamic Acid and P-3A. J. Am. Chem. Soc. 2014, 136,
2119. (b) Fukuyama, T.; Nakashima, N.; Okada, T.; Ryu, I. Free-
Radical-Mediated [2 + 2 + 1] Cycloaddition of Acetylenes, Amidines,
and CO Leading to Five-Membered α,β-Unsaturated Lactams. J. Am.
Chem. Soc. 2013, 135, 1006. (c) Wang, Y.-F.; Chen, H.; Zhu, X.;
Chiba, S. Copper-Catalyzed Aerobic Aliphatic C−H Oxygenation
Directed by an Amidine Moiety. J. Am. Chem. Soc. 2012, 134, 11980.
(d) Zhu, Y.; Nikolic, D.; Van Breemen, R. B.; Silverman, R. B.
Mechanism of Inactivation of Inducible Nitric Oxide Synthase by
Amidines. Irreversible Enzyme Inactivation without Inactivator
Modification. J. Am. Chem. Soc. 2005, 127, 858.
(5) (a) Lee, D.-Y.; Hong, B.-S.; Cho, E.-G.; Lee, H.; Jun, C.-H. A
Hydroacylation-Triggered Carbon−Carbon Triple Bond Cleavage in
Alkynes via Retro-Mannich Type Fragmentation. J. Am. Chem. Soc.
2003, 125, 6372. (b) Jun, C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S.
Cleavage of Carbon−Carbon Triple Bond of Alkyne via Hydro-
iminoacylation by Rh(I) Catalyst. J. Am. Chem. Soc. 2001, 123, 8600.
(c) Zhou, P.; Wang, J.-Y.; Zhang, T.-S.; Li, G.; Hao, W.-J.; Tu, S.-J.;
Jiang, B. Thiazolium Salt-catalyzed C−C Triple Bond Cleavage for
Accessing Substituted 1-Naphthols via Benzannulation. Chem.
Commun. 2018, 54, 164. (d) Sagadevan, A.; Charpe, V. P.;
Ragupathi, A.; Hwang, K. C. Visible Light Copper Photoredox-
Catalyzed Aerobic Oxidative Coupling of Phenols and Terminal
Alkynes: Regioselective Synthesis of Functionalized Ketones via C≡C
Triple Bond Cleavage. J. Am. Chem. Soc. 2017, 139, 2896.
(e) Okamoto, N.; Sueda, T.; Minami, H.; Miwa, Y.; Yanada, R.
Regioselective Iodoazidation of Alkynes: Synthesis of α,α-Diazidoke-
tones. Org. Lett. 2015, 17, 1336.
(6) (a) Wang, A.; Jiang, H. Palladium-Catalyzed Cleavage Reaction
of Carbon−Carbon Triple Bond with Molecular Oxygen Promoted by
Lewis Acid. J. Am. Chem. Soc. 2008, 130, 5030. (b) Khamarui, S.;
Maiti, R.; Maiti, D. K. General Base-tuned Unorthodox Synthesis of
Amides and Ketoesters with Water. Chem. Commun. 2015, 51, 384.
(c) Dighe, S. U.; Batra, S. Visible Light-Induced Iodine-Catalyzed
Transformation of Terminal Alkynes to Primary Amides via C≡C
Bond Cleavage under Aqueous Conditions. Adv. Synth. Catal. 2016,
358, 500. (d) Xu, K.; Li, Z.; Cheng, F.; Zuo, Z.; Wang, T.; Wang, M.;
Liu, L. Transition-Metal-Free Cleavage of C−C Triple Bonds in
Aromatic Alkynes with S8 and Amides Leading to Aryl Thioamides.
Org. Lett. 2018, 20, 2228.
(7) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. A New Ruthenium-
Catalyzed Cleavage of a Carbon−Carbon Triple Bond: Efficient
Transformation of Ethynyl Alcohol into Alkene and Carbon
Monoxide. J. Am. Chem. Soc. 2003, 125, 9294.
(8) For reviews, see: (a) Bunz, U. H. F. Poly(p-
phenyleneethynylene)s by Alkyne Metathesis. Acc. Chem. Res. 2001,
̈
34, 998. (b) Furstner, A.; Mathes, C.; Lehmann, C. W. Alkyne
Metathesis: Development of a Novel Molybdenum-Based Catalyst
System and Its Application to the Total Synthesis of Epothilone A and
C. Chem. - Eur. J. 2001, 7, 5299. (c) Furstner, A.; Davies, P. W.
̈
Alkyne Metathesis. Chem. Commun. 2005, 0, 2307. (d) Villar, H.;
Frings, M.; Bolm, C. Ring Closing Enyne Metathesis: A Powerful
Tool for the Synthesis of Heterocycles. Chem. Soc. Rev. 2007, 36, 55.
(e) Zhang, W.; Moore, J. S. Alkyne Metathesis: Catalysts and
Synthetic Applications. Adv. Synth. Catal. 2007, 349, 93.
(9) (a) Shen, T.; Wang, T.; Qin, C.; Jiao, N. Silver-Catalyzed
Nitrogenation of Alkynes: A Direct Approach to Nitriles through
C≡C Bond Cleavage. Angew. Chem., Int. Ed. 2013, 52, 6677.
(b) Okamoto, N.; Ishikura, M.; Yanada, R. Cleavage of Carbon−
Carbon Triple Bond: Direct Transformation of Alkynes to Nitriles.
Org. Lett. 2013, 15, 2571. (c) Dutta, U.; Lupton, D. W.; Maiti, D. Aryl
Nitriles from Alkynes Using tert-Butyl Nitrite: Metal-Free Approach
to C≡C Bond Cleavage. Org. Lett. 2016, 18, 860. (d) Lin, Y.; Song, Q.
Cleavage of the Carbon−Carbon Triple Bonds of Arylacetylenes for
the Synthesis of Arylnitriles without a Metal Catalyst. Eur. J. Org.
Chem. 2016, 2016, 3056. (e) Geyer, A. M.; Gdula, R. L.; Wiedner, E.
S.; Johnson, M. J. A. Catalytic Nitrile-Alkyne Cross-Metathesis. J. Am.
Chem. Soc. 2007, 129, 3800.
(15) (a) Okano, A.; James, R. C.; Pierce, J. G.; Xie, J.; Boger, D. L.
Silver(I)-Promoted Conversion of Thioamides to Amidines:
Divergent Synthesis of a Key Series of Vancomycin Aglycon Residue
4 Amidines That Clarify Binding Behavior to Model Ligands. J. Am.
Chem. Soc. 2012, 134, 8790. (b) Yamada, H.; Furusho, Y.; Yashima, E.
Diastereoselective Imine-Bond Formation through Complementary
Double-Helix Formation. J. Am. Chem. Soc. 2012, 134, 7250.
(c) Munde, M.; Lee, M.; Neidle, S.; Arafa, R.; Boykin, D. W.; Liu,
Y.; Bailly, C.; Wilson, W. D. Induced Fit Conformational Changes of a
“Reversed Amidine” Heterocycle: Optimized Interactions in a DNA
Minor Groove Complex. J. Am. Chem. Soc. 2007, 129, 5688.
(10) (a) Liu, Z.; Liu, J.; Zhang, L.; Liao, P.; Song, J.; Bi, X. Silver(I)-
Catalyzed Hydroazidation of Ethynyl Carbinols: Synthesis of 2-
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX