Journal of the American Chemical Society
COMMUNICATION
for 1aꢀ4. Their electrochemical data are also summarized in
Table 1. All the ladder boroles showed two-step reduction
processes with the first reversible redox waves and the second
irreversible reduction wave. Notably, the first reduction potential
of 4 (E1/2 = ꢀ1.72 V vs Fc/Fcþ) is more positive than that of the
PdO-containing analogue 7 (E1/2 = ꢀ1.98 V vs Fc/Fcþ).22 This
difference demonstrates the uniqueness of the borole ring as an
electron-accepting building unit.
Breher, F.; Chiu, C.-W.; Gamon, D.; Nied, D.; Radacki, K. Angew. Chem.
Int. Ed. 2010, 49, 8975.
(9) (a) Fan, C.; Piers, W. E.; Parvez, M. Angew. Chem. Int. Ed. 2009,
48, 2955. (b) Fan, C.; Mercier, L. G.; Piers, W. E.; Tuononen, H. M.;
Parvez, M. J. Am. Chem. Soc. 2010, 132, 9604. (c) Fan, C.; Piers, W. E.;
Parvez, M.; McDonald, R. Organometallics 2010, 29, 5132.
(10) (a) Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. J. Am.
Chem. Soc. 2002, 124, 8816. (b) Wakamiya, A.; Mishima, K.; Ekawa, K.;
Yamaguchi, S. Chem. Commun. 2008, 579.
In summary, we established a synthetic route to the thiophene-
fused ladder boroles based on the stepwise substitution of the
thienylboronic esters. The boroles 2ꢀ4 are air- and moisture-
sensitive due to the enhanced antiaromaticity of the borole ring
with the thiophene-fused skeleton. The characteristic absorption
and electrochemical properties of the ladder boroles, significantly
different from those of the other known heterole analogues,
demonstrate the uniqueness of the borole skeleton as a building
unit. These results provide important fundamental knowledge on
the extended π-electron systems with high antiaromatic character-
istics. Further study on the structureꢀproperties relationships for a
variety of heteroarene-fused boroles is now in progress.
(11) The synthesis of a dithienoborole derivative was reported pre-
viously, but its photophysical properties are largely different from our
results: Kim, S.; Song, K.; Kang, S. O.; Ko, J. Chem. Commun. 2004, 68.
(12) Fukazawa, A.; Yamaguchi, S. Chem. Asian J. 2009, 4, 1386.
(13) Ohshita, J.; Lee, K.-H.; Kimura, K.; Kunai, A. Organometallics
2004, 23, 5622.
(14) Dienes, Y.; Eggenstein, M.; Kꢀarpꢀati, T.; Sutherland, T. C.;
Nyulꢀaszi, L.; Baumgartner, T. Chem. Eur. J. 2008, 14, 9878.
(15) (a) Schroth, W.; Hintzsche, E.; Viola, H.; Winkler, R.; Klose,
H.; Boese, R.; Kempe, R.; Sieler, J. Chem. Ber. 1994, 127, 401. (b)
Okamoto, T.; Kudoh, K.; Wakamiya, A.; Yamaguchi, S. Org. Lett. 2005,
7, 5301. (c) Gao, J.; Li, R.; Li, L.; Meng, Q.; Jiang, H.; Li, H.; Hu, W. Adv.
Mater. 2007, 19, 3008.
(16) Mouri, K.; Wakamiya, A.; Yamada, H.; Kajiwara, T.; Yamaguchi,
S. Org. Lett. 2007, 9, 93.
’ ASSOCIATED CONTENT
(17) (a) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.;
van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317.
(b) Corminboeuf, C.; Heine, T.; Seifert, G.; Schleyer, P. v. R.; Weber, J.
Phys. Chem. Chem. Phys. 2004, 6, 273. (c) Fallah-Bagher-Shaldael, H.;
Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Org. Lett.
2006, 8, 863.
S
Supporting Information. Experimental procedures and
b
spectral data for all new compounds, crystallographic data and
ORTEP drawings of 1aꢀ4, and results of theoretical calculations.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(18) The NICS values based on the optimized structures for the
corresponding model compounds were also consistent with the values
obtained for the crystal structures (Supporting Information).
(19) The NICS(1)zz values of the thiophene rings in 2, 3, and 4
are ꢀ13.1, ꢀ12.3, and ꢀ13.7 ppm, respectively.
’ AUTHOR INFORMATION
Corresponding Author
(20) Allen, A. D.; Tidwell, T. T. Chem. Rev. 2001, 101, 1333.
(21) (a) Baumgartner, T.; Rꢀeau, R. Chem. Rev. 2006, 106, 4681.
(b) Fukazawa, A.; Hara, M.; Okamoto, T.; Son, E.-C.; Xu, C.; Tamao, K.;
Yamaguchi, S. Org. Lett. 2008, 10, 913.
’ ACKNOWLEDGMENT
(22) This value was determined under conditions identical with
those for the measurement of 4 and is consistent with the value originally
reported in the literature (E1/2 = ꢀ1.45 V vs Ag/AgCl).14
This work was partly supported by a Grant-in-Aid (No. 19675001)
from the Ministry of Education, Culture, Sports, Science, and
Technology, Japan, and CREST, JST. A.I. acknowledges the JSPS
research fellowship for young scientists.
’ REFERENCES
(1) Huynh, K.; Vignolle, J.; Tilley, T. D. Angew. Chem. Int. Ed. 2009,
48, 2835.
(2) (a) Minsky, A.; Meyer, A. Y.; Rabinovitz, M. Tetrahedron 1985,
41, 785. (b) Jusꢀelius, J.; Sundholm, D. Phys. Chem. Chem. Phys. 2008,
10, 6630.
(3) (a) Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, R. A. Synth.
Met. 1998, 96, 177. (b) Cao, H.; Ma, J.; Zhang, G.; Jiang, Y. Macro-
molecules 2005, 38, 1123.
(4) Eisch, J. J.; Hota, N. K.; Kozima, S. J. Am. Chem. Soc. 1969,
91, 4575.
(5) (a) Eisch, J. J.; Galle, J. E.; Kozima, S. J. Am. Chem. Soc. 1986,
108, 379. (b) Eisch, J. J.; Galle, J. E.; Shafii, B.; Rheingold, A. L.
Organometallics 1990, 9, 2342. (c) Fagan, P. J.; Nugent, W. A.; Calabrese,
J. C. J. Am. Chem. Soc. 1994, 116, 1880.
(6) Braunschweig, H.; Fernꢀandez, I.; Frenking, G.; Kupfer, T. Angew.
Chem. Int. Ed. 2008, 47, 1951.
(7) So, C.-W.; Watanabe, D.; Wakamiya, A.; Yamaguchi, S. Organo-
metallics 2008, 27, 3496.
(8) (a) Braunschweig, H.; Kupfer, T. Chem. Commun. 2008, 4487.
(b) Braunschweig, H.; Chiu, C.-W.; Radacki, K.; Brenner, P. Chem.
Commun. 2010, 46, 916. (c) Braunschweig, H.; Chiu, C.-W.; Radacki, K.;
Kupfer, T. Angew. Chem. Int. Ed. 2010, 49, 2041. (d) Braunschweig, H.;
6955
dx.doi.org/10.1021/ja2019977 |J. Am. Chem. Soc. 2011, 133, 6952–6955