2806
H. Pan et al. / Tetrahedron 69 (2013) 2799e2806
2. Kannan, S.; Dai, H.; Navath, R. S.; Balakrishnan, B.; Jyoti, A.; Janisse, J.; Romero,
R.; Kannan, R. M. Sci. Transl. Med. 2012, 4, 130ra46, 1e11.
3. Mintzer, M. A.; Grinstaff, M. W. Chem. Soc. Rev. 2011, 40, 173e190.
4. Menjoge, A. R.; Kannan, R. M.; Tomalia, D. A. Drug Discovery Today 2010, 15,
171e185.
5. Oelker, A. M.; Berlin, J. A.; Wathier, M.; Grinstaff, M. W. Biomacromolecules 2011,
12, 1658e1665.
6. Svenson, S.; Tomalia, D. A. Adv. Drug Delivery Rev. 2005, 57, 2106e2129.
7. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nat.
Nanotechnol. 2007, 2, 751e760.
8. Newkome, G. R.; Shreiner, C. D. Polymer 2008, 49, 1e173.
9. Sharma, A.; Neibert, K.; Sharma, R.; Maysinger, D.; Kakkar, A. Macromolecules
2011, 44, 521e529.
10. Ornelas, C.; Pennell, R.; Liebes, L. F.; Weck, M. Org. Lett. 2011, 13, 976e979.
11. Bi, X.; Shi, X.; Majoros, I. J.; Shukla, R.; Baker, J. R., Jr. J. Comput. Theor. Nanosci.
2007, 4, 1179e1187.
added borane dimethyl sulfide complex (1.2 mL, 11.84 mmol) at
room temperature. The mixture was stirred at room temperature
for 2 h until another addition of borane dimethyl sulfide complex
(1.2 mL, 11.84 mmol). The mixture was stirred for 24 h at room
temperature until 10 mL methanol was added slowly at 0 ꢂC. The
reaction mixture was evaporated under reduced pressure and dried
in vacuo for 1 h. The white residue was washed with ethyl ether
(3ꢁ10 mL) and ethyl acetate (3ꢁ5 mL). After washing, the residue
was dried in vacuo for 1 h until 20 mL of anhydrous methanol was
added. The solution was heated to reflux overnight and then cooled
to room temperature. The solution was condensed under reduced
pressure and then washed with ethyl ether (3ꢁ10 mL). The residue
was dried in vacuo to yield the product as a viscous oil (79 mg,
12. Majoros, I. J.; Myc, A.; Thomas, T.; Mehta, C. B.; Baker, J. R., Jr. Biomacromolecules
0.06 mmol, 82% yield). 1H NMR (400 MHz, CDCl3)
d (ppm) 7.11 (br,
2006, 7, 572e579.
13. Ornelas, C.; Weck, M. Chem. Commun. 2009, 5710e5712.
14. Bhattacharya, P.; Kaifer, A. E. J. Org. Chem. 2008, 73, 5693e5698.
15. Cho, T. J.; Zangmeister, R. A.; MacCuspie, R. I.; Patri, A. K.; Hackley, V. A. Chem.
Mater. 2011, 23, 2665e2676.
16. DeMattei, C. R.; Huang, B.; Tomalia, D. A. Nano. Lett. 2004, 4, 771e777.
17. Harada, A.; Yuzawa, A.; Kato, T.; Kojima, C.; Kono, K. J. Polym. Sci., Part A: Polym.
Chem. 2010, 48, 1391e1398.
2H), 6.85 (d, 2H), 6.17 (s, 2H), 4.06 (br, 2H), 3.77 (br, 9H), 3.68e3.55
(m, 14H), 2.65e2.47 (br m, 62H), 1.70e1.62 (br, 28H). 13C NMR
(100 MHz, CD3OD)
d (ppm) 162.1, 160.3, 158.8, 134.1, 130.9, 115.9,
109.2, 91.8, 72.2, 71.9, 71.8, 71.4, 71.0, 67.0, 62.9, 56.5, 56.4, 56.0,
54.2, 53.7, 53.4, 52.9, 41.1, 41.0, 32.0, 30.7, 30.3, 26.2, 24.8, 15.6.
HRMS (APCI) calcd for C68H138N15O7S (MþHþ) 1309.0619, observed
1309.0771.
18. Kose, M. M.; Onbulak, S.; Yilmaz, I. I.; Sanyal, A. Macromolecules 2011, 44,
2707e2714.
19. Sill, K.; Emrick, T. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5429e5439.
20. Gillies, E. R.; Frechet, J. M. J. J. Am. Chem. Soc. 2002, 124, 14137e14146.
21. Gillies, E. R.; Frechet, J. M. J. J. Org. Chem. 2004, 69, 46e53.
22. Harada, A.; Kato, T.; Kawamura, A.; Kojima, C.; Kono, K. J. Biomater. Sci., Polym.
Ed. 2010, 22, 1551e1561.
23. Chen, F.; Huang, P.; Zhu, Y.-J.; Wu, J.; Cui, D.-X. Biomaterials 2012, 33,
6447e6455.
24. Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Chem. Soc. Rev. 2011, 40,
44e56.
4.4.3. HS-TEG-G3CN (13). To a 2-neck 25 mL-round-bottom-flask
containing 11 (93 mg, 0.073 mmol) and a stir bar, 9 mL anhydrous
dichloromethane was added under argon and the solution was
stirred. Triethylsilane (0.3 mL, 3% vol), followed by trifluoroacetic
acid (0.5 mL, 5% vol) were then injected to the solution of 24 under
argon. The reaction mixture was stirred under argon at room
temperature overnight. Evidence of deprotection is displayed by
the observation of orange droplets at the surface of the CH2Cl2
solution, due to the insolubility of the formed thiol in CH2Cl2. After
12 h, the mixture was evaporated in vacuo at room temperature for
several hours (to ensure TFA removal). The residue obtained was
washed with CHCl3 (3ꢁ5 mL) and hexane (2ꢁ5 mL) and dried in
vacuo to yield 26 (75 mg, 0.068 mmol, 93%) as a pale yellow oil. 1H
25. Ma, D.; Guan, J.; Normandin, F.; Denommee, S.; Enright, G.; Veres, T.; Simard, B.
Chem. Mater. 2006, 18, 1920e1927.
26. Yiu, H. H. P.; Niu, H.-j.; Biermans, E.; van, T. G.; Rosseinsky, M. J. Adv. Funct.
Mater. 2010, 20, 1599e1609.
27. Kannaiyan, D.; Imae, T. Langmuir 2009, 25, 5282e5285.
28. Lee, J. W.; Kim, B.-K.; Kim, J. H.; Shin, W. S.; Jin, S.-H. J. Org. Chem. 2006, 71,
4988e4991.
29. Tao, L.; Geng, J.; Chen, G.; Xu, Y.; Ladmiral, V.; Mantovani, G.; Haddleton, D. M.
Chem. Commun. 2007, 3441e3443.
30. Liu, X.; Zheng, H.-N.; Yan, Q.; Wang, C.; Ma, Y.-Z.; Tang, Y.-C.; Xiao, S.-J. Surf. Sci.
2011, 605, 1106e1113.
31. Mizuta, Y.; Onodera, T.; Singh, P.; Matsumoto, K.; Miura, N.; Toko, K. Sens. Mater.
2010, 22, 193e200.
NMR (CD3COCD3):
d (ppm) 7.25 (d, 2H), 6.89 (d, 2H), 4.09 (t, 2H),
3.78 (t, 2H), 3.63e3.56 (br m, 10H), 3.44 (m, 24H), 2.89 (t, 16H), 2.73
(t, 4H), 2.66 (t, 16H), 2.51 (br t, 2H), 2.03 (m, 12H), 1.26 (s, 1H); 13C
32. Das, J.; Frechet, J. M. J.; Chakraborty, A. K. J. Phys. Chem.
13768e13775.
B 2009, 113,
NMR (100 MHz, CD3COCD3) d (ppm) 157.1, 132.9, 129.6, 119.0, 114.6,
33. Kono, K.; Liu, M.; Frechet, J. M. J. Proc. Int. Symp. Controlled Release Bioact. Mater.
1999, 26, 501e502.
72.7, 70.6, 70.5, 70.4, 70.0, 69.5, 67.5, 55.8, 51.9, 51.3, 50.1, 49.9, 48.9,
29.6, 29.2, 23.7, 21.4, 15.9. IR nmax (neat) 2248 cmꢀ1 (nitrile). HRMS
(ESI) calcd for C58H94N15O4S (MþHþ) 1096.73339, observed
1096.7560.
34. Matos, M. S.; Hofkens, J.; Verheijen, W.; De, S. F. C.; Hecht, S.; Pollak, K. W.;
Frechet, J. M. J.; Forier, B.; Dehaen, W. Macromolecules 2000, 33, 2967e2973.
35. Buhleier, E.; Wehner, W.; Voegtle, F. Synthesis 1978, 155e158.
36. van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P.;
Meijer, E. W. Science (Washington, D.C.) 1995, 268, 1592e1595.
37. Tande, B. M.; Wagner, N. J.; Mackay, M. E.; Hawker, C. J.; Jeong, M. Macromol-
ecules 2001, 34, 8580e8585.
Acknowledgements
38. Gupta, U.; Agashe, H. B.; Jain, N. K. J. Pharm. Pharm. Sci. 2007, 10, 358e367.
39. Valerio, C.; Ruiz, J.; Alonso, E.; Boussaguet, P.; Guittard, J.; Blais, J.-C.; Astruc, D.
Bull. Soc. Chim. Fr. 1997, 134, 907e914.
40. Woerner, C.; Muelhaupt, R. Angew. Chem. 1993, 105, 1367e1370 (See also An-
gew. Chem., Int. Ed. Engl., 1993, 32, 1306e1308).
41. Gowda, S.; Gowda, D. C. Tetrahedron 2002, 58, 2211e2213.
42. de Brabander-van den Berg, E. M. M.; Meijer, E. W. Angew. Chem., Int. Ed. Engl.
1993, 32, 1308e1311.
The authors are grateful for the financial support from the AACR/
PanCAN (Career Development Award, grant no. 08-20-25-DANI)
and from the Department of Defense (Prostate Cancer Research
Program, CDRMP, grant no PC081299). They also would like to ac-
knowledge Josh Wilhide for the acquisition of the HRMS spectra.
43. Daniel, M.-C.; Grow, M. E.; Pan, H.-M.; Bednarek, M.; Ghann, W. E.; Zabetakis,
K.; Cornish, J. New J. Chem. 2011, 35, 2366e2374.
Supplementary data
44. Lin, C.-E.; Richardson, S. K.; Garvey, D. S. Tetrahedron Lett. 2002, 43, 4531e4533.
45. Raguse, B.; Braach-Maksvytis, V.; Cornell, B. A.; King, L. G.; Osman, P. D. J.; Pace,
R. J.; Wieczorek, L. Langmuir 1998, 14, 648e659.
46. Taylor, J. E.; Yan, J. F.; Wang, J.-L. J. Am. Chem. Soc. 1966, 88, 1663e1667.
47. O’Brien, P. J. Can. J. Biochem. 1969, 47, 485e492.
48. Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix,
B.; Behr, J.-P. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7297e7301.
49. Behr, J. P. Chimia 1997, 51, 34e36.
50. Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.;
Wang, P. C.; Dong, A.; Liang, X.-J. ACS Nano 2010, 4, 5505e5511.
51. Ohkuma, S.; Poole, B. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 3327e3331.
52. Shirude, P. S.; Kumar, V. A.; Ganesh, K. N. Eur. J. Org. Chem. 2005, 5207e5215.
53. Steinem, C.; Janshoff, A.; von dem Bruch, K.; Reihs, K.; Goossens, J.; Galla, H.-J.
Bioelectrochem. Bioenerg. 1998, 45, 17e26.
1H NMR spectra and 13C NMR spectra of G1CN (1), G1NH2 (2),
G2CN (3), G2NH2 (4), G3CN (5), TmobS-TEG-OH (8), TmobS-TEG-
OTs (9), TmobS-TEG-Br (10), TmobS-TEG-G3CN (11), TmobS-TEG-
G3NH2 (12), and HS-TEG-G3CN (13). ESI spectrum of HS-TEG-G3CN
(3). FTIR of compounds 1, 2, 3, 4, and 5. Control experiment on the
effect of the presence of trace transition metal on the thiol group of
dendron 13. Supplementary data related to this article can be found
References and notes
54. Munson, M. C.; Garcia-Echeverria, C.; Albericio, F.; Barany, G. J. Org. Chem. 1992,
57, 3013e3018.
1. Medina, S. H.; El-Sayed, M. E. H. Chem. Rev. 2009, 109, 3141e3157.