Affinity of 1,8-Naphthyridines toward Adenosine Receptors
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 12 3031
(26) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Mo-
nopoli, A.; Ongini, E.; Varani, K.; Borea, P. A. 7-Substituted
5-amino-2-(furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimi-
dines as A2A adenosine receptor antagonists: a study on the
importance of modifications at the side chain on the activity and
solubility. J . Med. Chem. 2002, 45, 115-126.
(27) Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Klotz, K.-
N.; Lorenzen, A.; Cristalli, G. Introduction of alkynyl chains on
C-8 of adenosine led to very selective antagonists of the A3
adenosine receptor. Bioorg. Med. Chem. Lett. 2001, 11, 1931-
1934.
(28) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Moro,
S.; Klotz, K.-N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.;
Borea, P. A. Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine de-
rivatives as highly potent and selective human A3 adenosine
receptor antagonists: influence of the chain at the N8 pyrazole
nitrogen. J . Med. Chem. 2000, 43, 4768-4780.
(29) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, S.; Klotz,
K.-N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A.
Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly
potent and selective human A3 adenosine receptor antagonists.
J . Med. Chem. 1999, 42, 4473-4478.
(30) Baraldi, P. G.; Cacciari, B.; Moro, S.; Romagnoli, R.; J i, X.-D.;
J acobson K. A.; Gessi, S.; Borea, P. A.; Spalluto, G. Fluorosul-
fonyl- and bis-(â-chloroethyl)amino-phenylamino functionalized
pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: irre-
versible antagonists at the human A3 adenosine receptor and
molecular modeling studies. J . Med. Chem. 2001, 41, 2735-2742.
(31) Mu¨ller, C. E. Adenosine receptor ligands-recent developments.
Part I. Agonists. Curr. Med. Chem. 2000, 7, 1269-1288.
(32) Klotz, K.-N. Adenosine receptors and their ligands. Naunyn-
Schmiedeberg’s Arch. Pharmacol. 2000, 362, 382-391.
(33) Nakata, H. Biochemical and immunological characterization of
A1 adenosine receptors purified from human brain membranes.
Eur. J . Biochem. 1992, 206, 171-177.
(34) J i, X.-D.; Stiles, G. L.; van Galen, P. J . M.; J acobson, K. A.
Characterization of human striatal A2-adenosine receptors using
radioligand binding and photoaffinity labeling. J . Receptor Res.
1992, 12, 149-169.
(35) Ferrarini, P. L.; Mori, C.; Primofiore, G.; Calzolari, L. One step
synthesis of pyrimido[1,2-a][1, 8]naphthyridines, pyrido[1,2-a]-
pyrimidinones and 1,8-naphthyridinones. Anthypertensive agents.
V. J . Heterocycl. Chem. 1990, 27, 881-886.
(45) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Mo-
toshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.;
Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal structure
of rhodopsin: a G-protein-coupled receptor. Science 2000, 289,
739 745.
(46) Townsend-Nicholson, A.; Schofield, P. R. A threonine residue
in the seventh transmembrane domain of the human A1 adenos-
ine receptor mediates specific agonist binding. J . Biol. Chem.
1994, 269, 2373-2376. (b) Rivkees, S. A.; Ladbury, M. E.;
Barbhaiya, H. Identification of domains of the human A1
adenosine receptor that are important for binding receptor
subtype-selective ligands using chimeric A1/A2A adenosine recep-
tors. J . Biol. Chem. 1995, 270, 20485-20490. (c) Barbhaiya, H.;
McClain, R.; Ijzerman, A.; Rivkees, S. A. Site-directed mutagen-
esis of the human A1 adenosine receptor: influences of acidic
and hydroxy residues in the first four transmembrane domains
on ligand binding. Mol. Pharm. 1996, 50, 1635-1642. (d) Scott,
A.; Rivkees, S. A.; Barbhaiya, H.; Ijzerman, A. Identification of
the adenine binding site of the human A1 adenosine receptor.
J . Biol. Chem. 1999, 274, 3617-3621. (e) Scholl, D. J .; Wells, J .
N. Serine and alanine mutagenesis of the nine native cysteines
of the human A1 adenosine receptor. Biochem. Pharmacol. 2000,
60, 1647-1654.
(47) Cheng, Y. C.; Prusoff, W. H. Relationship Between the Inhibition
Constant (Ki) and the Concentration of Inhibition which Causes
50 Percent Inhibition (IC50) of an Enzyme Reaction. Biochem.
Pharmacol. 1973, 22, 3099-3108.
(48) Peterson, G. L. A simplification of the protein assay method of
Lowry et al. Which is more generally applicable. Anal. Biochem.
1977, 83, 356-366.
(49) Macromodel ver. 7.0; Schrodinger Inc., 1999.
(50) Case, D. A.; Pearlman, D. A.; Caldwell, J . W.; Cheatham, T. E.
III; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.;
Stanton, R. V.; Cheng, A. L.; Vincent, J . J .; Crowley, M.; Tsui,
V.; Radmer, R. J .; Duan, Y.; Pitera, J .; Massova, I.; Seibel, G.
L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. AMBER 6, 1999,
University of California, San Francisco.
(51) Insight II (98) Molecular Modeling System; MSI, 1998.
(52) WebLab ViewerPro 3.7; Molecular Simulations Inc., 2000.
(53) Horn, F.; Weare, J .; Beukers, M. W.; Ho¨rsch, S.; Bairoch, A.;
Chen, W.; Edvardsen, Ø.; Campagne, F.; Vriend, G. GPCRDB:
an information system for G protein-coupled receptors. Nucleic
Acids Res. 1998 26(1), 277-281.
(36) Ferrarini, P. L.; Mori, C.; Livi, O.; Biagi, G.; Marini, A. M.
Synthesis of some substituted pyrido[1,2-a]pyrimidin-4-ones and
1,8-naphthyridines.J . Heterocycl. Chem. 1983, 20, 1053-1057.
(37) Carboni, S.; Da Settimo, A.; Ferrarini, P. L.; Livi, O. Preparazi-
one e studio Farmacologico di alcuni derivati 1,2,3-triazol-1,8-
naftiridinici. Farmaco Ed. Sci. 1978, 33, 315-323.
(54) Berman, H. M.; Westbrook, J .; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, P. I. N.; Bourne, E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235-242.
(38) Wierenga, W.; Skulnick, H. I. J . Org. Chem. 1979, 44, 310-311.
(39) Brown, E. V. 1,8-Naphthyridine. I. Derivatives of 2- and 4-
Methyl-1,8-naphthyridines. J . Org. Chem. 1965, 30, 1607-1610.
(40) Ferrarini, P. L.; Mori, C.; Livi, O.; Biagi, G.; Marini, A. M.
Synthesis of some Substituted Pyrido[1,2a]pyrimidin-4-ones and
1,8-Naphthyridines. J . Heterocycl. Chem. 1983, 20, 1053-1057.
(41) Carboni, S.; Da Settimo, A.; Pirisino, G.; Segnini, D. Ricerche
nel campo delle naftiridine. Precisazioni sulla reazione 2,6-
diamminopiridina e acetoacetato di etile. Gazz. Chim. Ital. 1966,
96, 103-113.
(55) Thompson, J . D.; Higgins, D. G.; Gibson, T. J . Clustal W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res. 1994, 22,
4673-4680.
(56) Peet, N. P.; Lentz, N. L.; Meng, E. C.; Dudley, M. W.; Ogden, A.
M. L.; Demeter, D. A.; Weintraub, H. J . R.; Bey, P. A novel
synthesis of xanthines: support for a new binding mode for
xanthines with respect to adenosine at adenosine receptors. J .
Med. Chem. 1990, 33, 3127-3130.
(57) Laskowski, R. A. “SURFNET: A program for visualizing mo-
lecular surfaces, cavities, and intermolecular interactions” J .
Mol. Graph. 1995, 13, 323-330.
(58) Huang, C. C.; Couch, G. S.; Pettersen, E. F.; Ferrin, T. E.
Chimera: An Extensible Molecular Modeling Application Con-
structed Using Standard Components. Pac. Symp. Biocomput.
1996, 1, 724-726.
(42) Martini, C.; Pennacchi, E.; Poli, M. G.; Lucacchini, A. Solubili-
zation of adenisine A1 binding sites from sheep cortex. Neuro-
chem. Int. 1985, 7, 1017-1020.
(43) Mazzoni, M. R.; Martini, C.; Lucacchini, A. Regulation of agonist
binding to A2A adenosine receptor: effects of guanine nucleotides
(GDP[S] and GTP[S]) and Mg2+ ion. Biochim. Biophys. Acta.
1993, 1220, 76-84.
(44) Nanoff, C.; Mitterauer, T.; Roka, F.; Hohenegger, M.; Fre-
issmuth, M. Species Differences in A1 Adenosine Receptor/G
Protein Complex. Mol. Pharmacol. 1995, 48, 806-817.
J M030977P