Radical Cations of Stilbene Derivatives
J. Phys. Chem., Vol. 100, No. 32, 1996 13623
on the olefinic carbon in t-3•+-5•+ and t-7•+ and that the positive
charge interferes with the reactivity of t-3•+-5•+ and t-7•+ as a
radical toward O2 because of the electrophilic character of O2.
Koyama, K.; Matsuoka, T.; Tsutsumi, S. Bull. Chem. Soc. Jpn. 1967, 40,
162. (i) Futamura, S.; Ohta, H.; Kamiya, Y. Chem. Lett. 1982, 381.
(5) Tokumaru and his co-workers reported that t-1•+ reacts toward O2
at a rate constant of kO2 ) 1.3 × 106 M-1 s-1 on the basis of the dependence
of the decay of the absorption of t-1•+ on the initial concentration of t-1•+
,
which changed with varying laser intensity in the laser flash photolysis of
9-cyanoanthracene-t-1 in DMSO.4f,g They proposed that the oxidation
depends on the structures of the olefins, because the kO2 values varied over
Conclusions
It is concluded that c-3•+-5•+ and c-8•+ with a p-methoxyl
group generated by pulse radiolyses or γ-radiolyses isomerize
unimolecularly to the corresponding t-S•+ at a unimolecular rate
constant of ki ) 4.5 × 106 to 1.4 × 107 s-1, while t-3•+-5•+
and 7•+ with a p-methoxyl group are oxidized with O2 at a
a wide range, kO2 ) 1.3 × 106, 7.2 × 105, and 2.6 × 108 M-1 s-1 for t-1•+
,
t-8•+, and the radical cation of (E)-2,3-diphenyl-2-butene, respectively.
(6) Tojo, S.; Morishima, K.; Ishida, A.; Majima, T.; Takamuku, S. J.
Org. Chem. 1995, 60, 4684.
(7) Maccarone, E.; Mamo, A.; Perrini, G.; Torre, M. J. Chem. Soc.,
Perkin Trans. 2 1981, 324.
(8) Mueller, G. P.; Fleckenstein, J. G.; Tallent, W. H. J. Am. Chem.
Soc. 1951, 73, 2651.
bimolecular rate constant of kO2 ) (1.2-4.5) × 107 M-1 s-1
.
On the other hand, neither the unimolecular isomerization from
t-S•+ to c-S•+ nor the oxidation with O2 occurs in t-S•+ without
a p-methoxyl group.
(9) Hamill, W. Radical Ions; Kaiser, E. T., Kevan, L., Eds.; New York
Intersciences: New York, 1968; p 405. Shida, T.; Hamill, W. J. Chem.
Phys. 1966, 44, 2375. Shida, T. Electronic Absorption Spectra of Radical
Ions, Elsevier: Amsterdam, The Netherland, 1988; p 113.
(10) (a) It might be suggested that the rate constant from the slopes of
the plots in Figure 4 should be analyzed not only with dimerization but
also with regeneration of S•+ from the dimer radical cations formed by the
dimerization. However, the contribution of the formation of S•+ from the
dimer radical cations is negligibly small at the initial period of the decay
of the transient absorption of S•+ (1•+-3•+ and t-6•+), where the concentra-
tion of the dimer radical cations is much lower than that of S•+. Therefore,
the decay can be analyzed with the dimerization at the initial period.
Because kobs values were obtained in the initial period, the plots of kobs vs
concentration of S gave linear lines from which the rate constants of
dimerization were calculated (Figure 4). (b) The dimerization was also
observed in t-8•+ on the basis of electrochemical measurements, although
the rate constant of kd ) (3.4-5) × 103 M-1 s-1 was too small to be
observed under the present conditions in this study. Steckhan, E. J. Am.
Chem. Soc. 1978, 100, 3526. Burgbacher, G.; Schaefer, H. J. J. Am. Chem.
Soc. 1979, 101, 7590.
It should be noted that an unpaired electron is not completely
localized on the olefinic carbon in t-3•+-5•+ and 7•+ and that
a positive charge interferes with the reactivity of t-3•+-5•+ and
7
•+ as a radical toward O2 because of the electrophilic character
of O2. The present work is the first example to clarify that the
reactivities of stilbene radical cations are controlled predomi-
nantly by charge-spin separation induced by p-methoxyl
substitution.
Acknowledgment. We wish to thank the members of the
Radiation Laboratory of ISIR, Osaka University, for running
the linear accelerator. This work was partly supported by a
Grant-in-Aid (No. 07455341) from the Ministry of Education,
Science, Sport and Culture of Japan.
(11) Yamamoto, Y.; Aoyama, T.; Hayashi, K. J. Chem. Soc., Faraday
Trans. 1 1988, 84, 2209.
(12) Such c-t isomerization has also been observed in c-1•+ during the
absorption measurement by a multichannel photodetector at 77 K. It is
considered that photochemical isomerization of c-1•+ to t-1•+ occurs
quantitatively upon irradiation of monitor light from the multichannel
photodetector. Similar to c-1•+, c-8•+ could not be detected even at 77 K
by a multichannel photodetector.3d
References and Notes
(1) Reviews: (a) Fox, M. A., Chanon, M., Eds. Photoinduced Electron
Transfer; Elsevier: Amsterdam, The Netherland, 1988. (b) Mattes, S. L.;
Farid, S. In Organic Photochemistry; Padwa, A., Ed.; Marcel Deckker: New
York, 1983; Vol. 6, pp 233-326. (c) Chanon, M.; Eberson, L. In
Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier:
Amsterdam, The Netherland, 1988; Part C, Chapter 4. (d) Lewis, F. D. In
Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier:
Amsterdam, The Netherland, 1988; Part C, Chapter 4. (e) Yoon, U. C.;
Mariano, P. S. Acc. Chem. Res. 1992, 25, 233. (f) Parker, V. D. Acc. Chem.
Res. 1984, 17, 243. (g) Eberson, L. AdV. Phys. Org. Chem. 1982, 18, 79.
(h) Mizuno, K.; Otsuji, Y. In Topics in Current Chemistry; Springer: Berlin,
1994; Vol. 169, pp 301-346. (i) Lopez, L. In Topics in Current Chemistry;
Mattay, J., Ed.; Springer: Berlin, 1990; Vol. 156. (j) Roth, H. In Topics
in Current Chemistry; Mattay, J., Ed.; Springer: Berlin, 1990; Vol. 156, p
1. (k) Mattay, J. In Topics in Current Chemistry; Mattay, J., Ed.;
Springer: Berlin, 1990; Vol. 156, p 219. (l) Mariano, P. S.; Stavinoha, J.
L. In Synthetic Organic Chemistry; Horspool, W. M., Ed.; New York, 1984;
p 145. (m) Mattay, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 825. (n)
Kavarnos, G. J.; Turro, N. J. Chem. ReV. 1986, 86, 401. (o) Mattay, J.
Synthesis 1989, 233. (p) Ledwith, A. Acc. Chem. Res. 1972, 5, 133. (q)
Pac, C. Pure Appl. Chem. 1986, 58, 1249.
(13) Takamuku, S.; Komitsu, S.; Toki, S. Radiat. Phys. Chem. 1989,
34, 553.
(14) Arai, S.; Grev, D. A.; Dorfman, L. M. J. Chem. Phys. 1967, 46,
2572.
(15) Kikuchi, O.; Oshiyama, T.; Takahashi, O.; Tokumaru, K. Bull.
Chem. Soc. Jpn. 1992, 65, 2267.
(16) The dimerization of 3•+ has been reported to yield a dimer in the
anodic oxidation of 3 in the presence of acetic acid and sodium acetate in
acetonitrile. Eberson, L.; Parker, V. D. Acta Chem. Scand. 1970, 24, 3553.
(17) It might be suggested that Scheme 4 should be replaced by a series
of canonical valence bond representations including a quinoid-type structure,
B, which is favorable because of the stabilization of the positive charge by
the p-methoxyl group. Because the contribution of B can critically explain
both the unimolecular isomerization and the oxidation in 3•+-5•+, 7•+, and
8•+ with a p-methoxyl group, B with charge-spin separation is shown in
Scheme 4.
(18) Product analyses were performed in γ-radiolyses of S (S ) 1-8)
by a 60Co γ source in Ar- or O2-saturated DCE (1.0 × 10-2 M) at room
temperature. t-3-5 were formed in high yields in γ-radiolyses of c-3-5
in Ar-saturated DCE, and 4-methoxybenzyl phenyl ketone was regioselec-
tively formed in γ-radiolysis of 3 in O2-saturated DCE, although the details
will be published elsewhere.
(2) (a) Lewis, F. D.; Dykstra, R. E.; Gould, I. R.; Farid, S. J. Phys.
Chem. 1988, 92, 7042. (b) Lewis, F. D.; Bedell, A. M.; Dykstra, R. E.;
Elbert, J. E.; Gould, I. R.; Farid, S. J. Am. Chem. Soc. 1990, 112, 8055. (c)
Kuriyama, Y.; Arai, T.; Sakuragi, H.; Tokumaru, K. Chem. Phys. Lett. 1990,
173, 253.
(3) (a) Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J. Am.
Chem. Soc. 1985, 107, 203. (b) Akaba, R.; Sakuragi, H.; Tokumaru, K.
Chem. Phys. Lett. 1990, 174, 80. (c) Kuriyama, Y.; Sakuragi, H.; Tokumaru,
K.; Yoshida, Y.; Tagawa, S. Bull. Chem. Soc. Jpn. 1993, 66, 1852. (d)
Tojo, S.; Morishima, K.; Ishida, A.; Majima, T.; Takamuku, S. Bull. Chem.
Soc. Jpn. 1995, 68, 958.
(19) (a) Yates, B. F.; Bouma, W. J.; Radom, L. J. Am. Chem. Soc. 1984,
106, 5805. (b) Yates, B. F.; Bouma, W. J.; Radom, L. Tetrahedron 1986,
22, 6225. (c) Hammerum, S. Mass Spectrom. ReV. 1988, 7, 123. Stirk, K.
M.; Kiminkinen, L. K. M.; Kentta¨maa, H. I. Chem. ReV. 1992, 92, 1649.
(e) Smith, R. L.; Chyall, L. J.; Chou, P. K.; Kentta¨maa, H. I. J. Am. Chem.
Soc. 1994, 116, 781.
(4) (a) Ericksen, J.; Foote, C. S. J. Am. Chem. Soc. 1980, 102, 6083.
(b) Manring, L. E.; Ericksen, J.; Foote, C. S. J. Am. Chem. Soc. 1980, 102,
4275. (c) Spada, L. T.; Foote, C. S. J. Am. Chem. Soc. 1980, 102, 391. (d)
Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J. Am. Chem. Soc.
1985, 107, 203. (e) Yamashita, T.; Tsurusako, T.; Nakamura, N.; Yasuda,
M.; Shima, K. Bull. Chem. Soc. Jpn. 1993, 66, 857. (f) Tsuchiya, M.;
Ebbesen, T. W.; Nishimura, Y.; Sakuragi, H.; Tokumaru, K. Chem. Lett.
1987, 2121. (g) Konuma, S.; Aihara, S.; Kuriyama, Y.; Misawa, H.; Akaba,
R.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1991, 1897. (h) Inoue, T.;
(20) (a) Tojo, S.; Toki, S.; Takamuku, S. J. Org. Chem. 1991, 56, 6240.
(b) Brede, O.; David, F.; Steenken, S. J. Chem. Soc., Perkin Trans. 2 1995,
23.
(21) Bonazzola, L.; Michaut, J.-P.; Roncin, J.; Misawa, H.; Sakuragi,
H.; Tokumaru, K. Bull. Chem. Soc. Jpn. 1990, 63, 347.
(22) Maillard, B.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem. Soc. 1983,
105, 5095.
JP9609904