R. Pignatello et al. / European Journal of Medicinal Chemistry 46 (2011) 1665e1671
1671
[17] P. Clapés, M.R. Infante, Amino acid-based surfactants: enzymatic synthesis,
properties and potential applications, Biocatal. Biotransform. 20 (2002)
215e233.
[18] I. Toth, A novel chemical approach to drug delivery: lipidic amino acid
conjugates, J. Drug Target. 2 (1994) 217e239.
six additional times on a different day with all the formulations to
ensure reproducibility of results; at least four out of the six values
for each assay were considered for MIC calculation.
[19] R. Pignatello, S. Guccione, F. Castelli, M.G. Sarpietro, L. Giurato, M. Lombardo,
G. Puglisi, I. Toth, Enhancement of drug affinity for cell membranes by
conjugation with lipoamino acids II. Experimental and computational
evidence using biomembrane models, Int. J. Pharm. 310 (2006) 53e63.
[20] M.G. Sarpietro, D. Micieli, R. Pignatello, M.T. Liang, I. Toth, F. Castelli, Effect of
variation in the chain length and number in modulating the interaction of an
immunogenic lipopeptide with biomembrane models, Thermochim. Acta 471
(2008) 14e19.
References
[1] H.F. Chambers, Amynoglicosides. in: L.L. Brunton, J.S. Lazo, K.L. Parker (Eds.),
Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, eleventh ed.
McGraw-Hill, New York, 2006, pp. 1155e1171.
[2] F. Le Goffic, M.-L. Capmau, F. Tangy, M. Baillarge, Mechanism of action of
aminoglycoside antibiotics, Eur. J. Biochem. 102 (1979) 73e81.
[21] K. Valkò, I. Toth, P. Ward, P. Slegel, W.A. Gibbons, Lipidic peptides. XI.
Quantitative structure-activity relationship of a series of lipidic amino acid
[3] F. Tangy, M.-L. Capmau, F. Le Goffic, Photo-induced labelling of Escherichia coli
ribosomes by a tobramycin analog, Eur. J. Biochem. 131 (1983) 581e587.
[4] S. Hanessian, M. Tremblay, E.E. Swayze, Tobramycin analogues with C-5
aminoalkyl ether chains intended to mimic rings III and IV of paromomycin,
Tetrahedron 59 (2003) 983e993.
conjugates of b-lactam antibiotics, Int. J. Pharm. 79 (1992) 123e230.
[22] I. Toth, R.A. Hughes, P. Ward, A.M. McColm, D.M. Cox, G.J. Anderson,
W.A. Gibbons, Fatty peptides. VI. Penicillin and cephalosporin esters with
increased lipophilic character, Int. J. Pharm. 77 (1991) 13e20.
[23] R. Pignatello, A. Mangiafico, B. Ruozi, G. Puglisi, P.M. Furneri, Amphiphilic
erythromycin-lipoamino acid ion pairs: characterization and in vitro micro-
biological evaluation, AAPS PharmSciTech, in press.
[5] S. Sicsic, J.F. Le Bigot, C. Vincent, C. Cerceau, F. Le Goffic, Effects of N-alkylation
and N-acylation on tobramycin activity, J. Antibiot. 35 (1982) 574e579.
[6] R. Neubert, Ion pair transport across membranes, Pharm. Res.
6 (1989)
743e747.
[24] A.K. Dash, R. Suryanarayanan, Solid-state properties of tobramycin, Pharm.
Res. 8 (1991) 1159e1165.
[7] W.G. Dai, L.C. Dong, Characterization of physiochemical and biological prop-
erties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing,
Int. J. Pharm. 336 (2007) 58e66.
[8] E.K. Anderberg, T. Lindmark, P. Artursson, Sodium caprate elicits dilatations in
human intestinal tight junctions and enhances drug absorption by the para-
cellular route, Pharm. Res. 10 (1993) 857e864.
[9] G.A. Castro, A.L. Coelho, C.A. Oliveira, G.A. Mahecha, R.L. Oréfice, L.A. Ferreira,
Formation of ion pairing as an alternative to improve encapsulation and
stability and to reduce skin irritation of retinoic acid loaded in solid lipid
nanoparticles, Int. J. Pharm. 381 (2009) 77e83.
[25] A.K. Dash, Tobramycin. in: H. Brittain (Ed.), Analytical Profiles of Drug
Substances and Excipients, 24. Academic Press, San Diego, 1996, pp. 579e613.
[26] L. Szilágyi, Z.Sz. Pusztahelyi, S. Jakab, I. Kovács, Microscopic protonation
constants in tobramycin. An NMR and pH study with the aid of partially N-
acetylated derivatives, Carbohydr. Res. 247 (1993) 99e109.
[27] H. Yuan, S.P. Jiang, Y.Z. Du, J. Miao, X.G. Zhang, F.Q. Hu, Strategic approaches
for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles,
Colloids Surf. B Biointerfaces 70 (2009) 248e253.
[28] Clinical Laboratory Standards Institute, M100-S20: Performance Standards for
Antimicrobial Susceptibility Testing; Twentieth Informational Supplement
Clinical Laboratory Standards Institute, Wayne, Pennsylvania, USA (2010).
[29] R. Pignatello, A. Puleo, S. Guccione, G. Raciti, R. Acquaviva, A. Campisi,
C.A. Ventura, G. Puglisi, Enhancement of drug affinity for cell membranes by
conjugation with lipoamino acids. I. Synthesis and biological evaluation of
lipophilic conjugates of tranylcypromine, Eur. J. Med. Chem. 40 (2005)
1074e1079.
[30] R. Pignatello, V. Pantò, S. Salmaso, S. Bersani, V. Pistarà, V. Kepe, J.R. Barrio,
G. Puglisi, Flurbiprofen derivatives in Alzheimer’s disease: synthesis, phar-
macokinetic and biological assessment of lipoamino acid prodrugs, Bioconjug.
Chem. 19 (2008) 349e357.
[10] A. Schoubben, P. Blasi, S. Giovagnoli, M. Ricci, C. Rossi, Simple and scalable
method for peptide inhalable powder production, Eur. J. Pharm. Sci. 39 (2010)
53e58.
[11] R. Gaudana, A. Parenky, R. Vaishya, S.K. Samanta, A.K. Mitra, Development and
characterization of nanoparticulate formulation of a water soluble prodrug of
dexamethasone by HIP complexation, J. Microencapsul. 28 (2011) 10e20.
[12] S. Matschiner, R. Neubert, W. Wohlrab, F. Matschiner, Influence of ion pairing
on ex vivo penetration of erythromycin into sebaceous follicles, Skin Phar-
macol. 9 (1996) 270e273.
[13] R. Cavalli, M.R. Gasco, P. Chetoni, S. Burgalassi, M.F. Saettone, Solid lipid
nanoparticles (SLN) as ocular delivery system for tobramycin, Int. J. Pharm.
238 (2002) 241e245.
[31] H. Sasaki, K. Yamamura, T. Mukai, K. Nishida, J. Nakamura, M. Nakashima,
M. Ichikawa, Enhancement of ocular drug penetration, Crit. Rev. Ther. Drug
Carrier Syst. 16 (1999) 85e146.
[32] W.A. Gibbons, R.A. Hughes, M. Charalambous, M. Christodoulou, A. Szeto,
A.E. Aulabaugh, P. Mascagni, I. Toth, Lipidic peptides. I, synthesis, resolution
and structural elucidation of lipidic amino acids and their homo- and hetero-
oligomers, Liebigs Ann. Chem. (1990) 1175e1183.
[33] Clinical Laboratory Standards Institute, Methods for Dilution Antimicrobial
Susceptibility Test for Bacteria that Grow Aerobically; Approved Standard -
8th Ed. CLSI Document M07-A8. Clinical Laboratory Standards Institute,
Wayne, Pennsylvania, USA, 2009.
[14] B.P. Ross, S.E. DeCruz, T.B. Lynch, K. Davis-Goff, I. Toth, Design, synthesis, and
evaluation of
a liposaccharide drug delivery agent: application to the
gastrointestinal absorption of gentamicin, J. Med. Chem. 47 (2004)
1251e1258.
[15] E. Elizondo, S. Sala, E. Imbuluzqueta, D. González, M.J. Blanco-Prieto,
C. Gamazo, N. Ventosa, J. Veciana, High loading of gentamicin in bioadhesive
PVM/MA nanostructured microparticles using compressed carbon-dioxide,
Pharm. Res. 28 (2011) 309e321.
[16] M.R. Infante, A. Pinazo, J. Seguer, Non-conventional surfactants from amino
acids and glycolipids: structure, preparation and properties, Colloids Surf. A
Physicochem. Eng. Asp. 123-124 (1997) 49e70.