ACS Medicinal Chemistry Letters
LETTER
’ REFERENCES
(1) Basciano, H.; Federico, L.; Adeli, K. Fructose, insulin resistance,
and metabolic dyslipidemia. Nutr. Metab. 2005, 2, 5.
(2) Zimmet, P.; Alberi, K. G.; Shaw, J. Global and societal implica-
tions of the diabetes epidemic. Nature 2001, 414, 782–787.
(3) Songer, T. J. The economic cost of NIDDM. Diabetes Metab. Rev.
1992, 8, 389–404.
(4) Gross, L. S.; Li, L.; Ford, E. S.; Liu, S. Increased consumption of
refined carbohydrates and the epidemic of type 2 diabetes in the United
States: An ecological assessment. Am. J. Clin. Nutr. 2004, 79, 774–779.
(5) Kasim-Karakas, S. E.; Vriend, H.; Almario, R.; Chow, L. C.;
Goodman, M. N. Effects of dietary carbohydrates on glucose and lipid
metabolism in golden Syrian hamsters. J. Lab. Clin. Med. 1996,
128, 208–213.
(6) Hwang, I. S.; Ho, H.; Hoffman, B. B.; Reaven, G. M. Fructose-
induced insulin resistance and hypertension in rats. Hypertension 1987,
10, 512–516.
(7) Reiser, S.; Hallfrisch, J. Insulin sensitivity and adipose tissue
weight of rats fed starch or sucrose diets ad libitum or in meals. J. Nutr.
1977, 107, 147–155.
(8) Zavaroni, I.; Sander, S.; Scott, S.; Reaven, G. M. Effect of
fructose-feeding on insulin secretion and insulin action in the rat.
Metabolism 1980, 29, 970–973.
(9) Martinez, F. J.; Rizza, R. A.; Romero, J. C. High-fructose feeding
elicits insulin resistance, hyperinsulinemia, and hypertension in normal
mongrel dogs. Hypertension 1994, 23, 456–463.
(10) Raben, A.; Vasilaras, T. H.; Moller, A. C.; Astrup, A. Sucrose
compared with artificial sweeteners, different effects on ad libitum food
intake and body weight after 10 wk of supplementation in overweight
subjects. Am. J. Clin. Nutr. 2002, 76, 721–729.
(11) Teff, K. L.; Elliott, S. S.; Tschop, M.; Kieffer, T. J.; Rader, D.;
Heiman, M.; Townsens, R. R.; Keim, N. L.; D'Alessio; Havel, P. J.
Dietary fructose reduces circulating insulin and leptin, attenuates
postprandial suppression of ghrelin, and increases triglycerides in
women. J. Clin. Endocrinol. Metab. 2004, 89, 2963–2972.
(12) Kok, N.; Roberfroid, M.; Delzenne, M. Dietary oligofructose
modifies the impact of fructose on hepatic triacylglycerol metabolism.
Metabolism 1996, 45, 1547–1550.
(13) Miyazaki, M.; Dobrzyn, A.; Man, W. C.; Chu, K.; Sampath, H.;
Kim, H. J.; Ntambi, J. M. Stearoyl-CoA desaturase I gene expression is
necessary for fructose-mediated induction of lipogenic gene expression
by sterol regulatory element-binding protein-1c-dependent and -inde-
pendent mechanisms. J. Biol. Chem. 2004, 279, 25164–25171.
(14) Mayes, P. A. Intermediary metabolism of fructose. Am. J. Clin.
Nutr. 1993, 58, 754S–765S.
(15) Dresner, A.; Laurent, D.; Marcucci, M.; Griffin, M. E.; Dufour,
S.; Cline, G. W.; Slezak, L. A.; Andersen, D. K.; Hundal, R. S.; Rothman,
D. L.; Petersen, K. F.; Shulman, G. I. Effects of free fatty acids on glucose
transport and IRS-1-associated phosphatidylinositol 3-kinase activity.
J. Clin. Invest. 1999, 103, 253–259.
(16) Ueno, M.; Bezerra, R. M.; Silva, M. S.; Tavares, D. Q.; Carvalho,
C. R.; Saad, M. J. A high-fructose diet induces changes in pp185
phosphorylation in muscle and liver of rats. Braz. J. Med. Biol. Res.
2000, 33, 1421–1427.
(21) Swanson, J. E.; Laine, D. C.; Thomas, W.; Bantle, J. P. Meta-
bolic effects of dietary fructose in healthy subjects. Am. J. Clin. Nutr.
1992, 58, 851–856.
(22) Lewis, G. F.; Carpentier, A.; Adeli, K.; Giacca, A. Disordered fat
storage and mobilization in the pathogenesis of insulin resistance and
type 2 diabetes. Endocr. Rev. 2002, 23, 201–229.
(23) Raushel, F. M.; Cleland, W. W. Bovine liver fructokinase:
Purification and kinetic properties. Biochemistry 1977, 16, 2169–2175.
(24) Raushel, F. M.; Cleland, W. W. Determination of the rate-
limiting steps and chemical mechanism of fructokinase by isotope
exchange, isotope partitioning, and pH studies. Biochemistry 1977,
16, 2176–2181.
(25) Raushel, F. M.; Cleland, W. W. Substrate and anomeric
specificity of fructokinase. J. Biol. Chem. 1973, 248, 8174–8177.
(26) Elliott, S. S.; Keim, N. L.; Stern, J. S.; Teff, K.; Havel, P. J.
Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin.
Nutr. 2002, 76, 911–922.
(27) Asipu, A.; Hayward, B. E.; O'Reilly, J.; Bonthron, D. T. Proper-
ties of normal and mutant recombinant human ketohexokinases and
implications for the pathogenensis of essential fructosuria. Diabetes
2003, 52, 2426–2432.
(28) Bonthron, D. T.; Brady, N.; Donaldson, I. A.; Steinmann, B.
Molecular basis of essential fructosuria: Molecular cloning and muta-
tional analysis of human ketohexokinase (fructokinase). Hum. Mol.
Genet. 1994, 3, 1627–1631.
(29) Trinh, C. H.; Asipu, A.; Bonthron, D. T.; Phillips, S. E. V.
Structures of alternatively spliced isoforms of human ketohexokinase.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, D65, 201–211.
(30) Gibbs, A. C.; Abad, M. C.; Zhang, X.; Tounge, B. A.;
Lewandowski, F. A.; Struble, G. T.; Sun, W.; Sui, Z.; Kuo, L. C. Electron
density guided fragment-based lead discovery of ketohexokinase inhibi-
tors. J. Med. Chem. 2010, 53, 7979–7991.
(31) Details for KHK-C cloning and expression are given in the
Supporting Information (see the paragraph at the end of this paper).
(32) Matulis, D.; Kranz, J. K.; Salemme, F. R.; Todd, M. J. Thermo-
dynamic stability of carbonic anhydrase: measurements of binding
affinity and stoichiometry using ThermoFluor. Biochemistry 2005,
44, 5258–5266.
(33) Purchased from BellBrook Laboratories, Madison, NJ.
(34) Kozak, M.; Hayward, B.; Borek, D.; Bonthron, D. T.; Jaskolski,
M. Expression, purification and preliminary crystallographic studies of
human ketohexokinase. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2001,
D57, 586–588.
(35) Details on the screening assay method are given in the
Supporting Information (see the paragraph at the end of this paper).
(36) El-Araby, M.; Pottorf, R. S.; Player, M. R. Synthesis of a 2,4,8-
trisubstituted pyrimidino[5,4-d]pyrimidine library via sequential SNAr
reactions on solid-phase. Combin. Chem. High Throughput Screening
2004, 7, 413–421.
(37) Structural information on KHK from X-ray crystallography has
been reported (ref 29 and 30).
(38) Details for our X-ray crystallography are given in the Support-
ing Information (see the paragraph at the end of this paper).
(39) The atomic coordinates and structure factors for KHK com-
plexes with 3, 8, and 47 were deposited in the Protein Data Bank, with
the accession codes 3QA2, 3Q92, and 3QAI, respectively [Protein Data
Bank, Research Collaboratory for Structural Bioinformatics (http://
www.rcsb.org)].
(40) Native KHK is a functional dimer with two subunits that are
basically the same (homodimer) (refs 23, 28, and 30) except for their
spatial disposition due to conformational differences (hence, our use of
the term “pseudohomodimer”) (refs 29, 30, and this work). The
subunits are designated a and b herein.
(17) Koteish, A.; Diehl, A. M. Animal models of steatosis. Semin.
Liver Dis. 2001, 21, 89–104.
(18) Wu, T.; Giovannucci, E.; Pishon, T.; Hankinson, S. E.; Ma, J.;
Rifai, N.; Rimm, E. B. Fructose, glycemic load, and quantity and quality
of carbohydrate in relation to plasma C-peptide concentrations in US
women. Am. J. Clin. Nutr. 2004, 80, 1043–1049.
(19) Oron-Herman, M.; Rosenthal, T.; Sela, B. A. Hyperhomocys-
teinemia as
a component of syndrome X. Metabolism 2003,
52, 1491–1495.
(41) See the paragraph about Supporting Information at the end of
this paper.
(20) Holven, K. B.; Aukrust, P.; Retterstol, K.; Hagve, T. A.;
Morkrid, L.; Ose, L.; Nenseter, M. S. Increased levels of C-reactive
protein and interleukin-6 in hyperhomocysteinemic subjects. Scand. J.
Clin. Lab. Invest. 2006, 66, 45–54.
(42) Details on the cellular assay procedure, including a negative
control, are given in the Supporting Information.41
542
dx.doi.org/10.1021/ml200070g |ACS Med. Chem. Lett. 2011, 2, 538–543