C. M. Sharland et al. / Tetrahedron Letters 52 (2011) 2320–2323
2323
3. Lipitor: Oldfield, E. Acc. Chem. Res. 2010, 43, 1216–1226; Lindsley, C. W. ACS
Chem. Neurosci. 2010, 1, 407–408; Polypyrroles: Huang, J. X. Pure Appl. Chem.
2006, 78, 367–376; Huang, J. H.; Kaner, R. B. Chem. Commun. 2006, 367–376.
4. Bergman, J.; Janosik, T. In Comprehensive Heterocyclic Chemistry III(1995–2007);
Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: St.
Louis and Oxford, 2008. vol. 3.03, pp 269–351; Sundberg, R. J. In Comprehensive
Heterocyclic Chemistry II(1984–1996); Katritzky, A. R., Rees, C. W., Scriven, E. F.
V., Eds.; Elsevier: St. Louis and Oxford, 1996. Vol. 2.03, pp 119–206 and
references therein.; For an extensive listing of very recent methods of pyrrole
synthesis, see: Merkul, E.; Boersch, C.; Frank, W.; Müller, T. J. J. Org. Lett. 2009,
Although not pursued during the present studies, it is evident
from the excellent yields of pyrroles obtained that the two possible
diastereoisomers of the precursors 4, 8 and 19 undergo smooth
cyclisations, but probably at slightly different rates. This aspect
has been discussed previously in the context of our related furan
synthesis.1,15
Overall, this present pyrrole synthesis is arguably competitive
with any other currently available by reason that it proceeds in
essentially quantitative yields at ambient temperature, the only
by-product is water and both the solvent and catalyst can easily
be recycled and reused. It, therefore, satisfies many of the criteria
of a ‘green’ procedure. Of course, this statement does not take into
account all of the approach work required to prepare the necessary
precursors, much of which suffers from all of the usual drawbacks
and waste associated with many synthetic steps in current use. Of
all the alternative catalyst systems recently reported, probably
those based on the use of gold(III) are the most comparable.16
However, these are generally homogeneous species not easily
recovered and reused, in direct contrast to the present heteroge-
neous system. The present method also has clear potential for
use in various types of flow systems; this aspect will be reported
separately.
11, 2269–2272; For
a review of multi-component pyrrole syntheses, see:
Estevez, V.; Villacampa, M.; Carlos, J. Chem. Soc. Rev. 2010, 39, 4402–4421.
5. Knight, D. W. Prog. Heterocycl. Chem. 2002, 14, 19–51.
6. Gridley, J. J.; Coogan, M. P.; Knight, D. W.; Malik, K. M. A.; Sharland, C. M.;
Singkhonrat, J.; Williams, S. Chem. Commun. 2003, 2550–2551; Grandel, R.;
Kazmaier, U. Eur. J. Org. Chem. 1998, 1833–1840.
7. Van Esseveldt, B. C. J.; Van Delft, F. L.; Smits, J. M. M.; De Gelder, R.;
Schoemaker, H. E.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2004, 346, 823–834; Van
Esseveldt, B. C. J.; Van Delft, F. L.; Smits, J. M. M.; De Gelder, R.; Rutjes, F. P. J. T.
Synlett 2003, 2354–2358; Esseveldt, B. C. J. V.; Vervoort, P. W. H.; Delft, F. L. V.;
Rutjes, F. P. G. T. J. Org. Chem. 2005, 70, 1791–1795.
8. Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721–4722; For an Au(III)-
catalysed version, see: Gouault, N.; Le Roch, M.; Cornée, C.; David, M.; Uriac, P.
J. Org. Chem. 2009, 74, 5614–5617.
9. Yamamoto, H.; Sasaki, I.; Hirai, Y.; Namba, K.; Imagawa, H.; Nishizawa, M.
Angew. Chem., Int. Ed. 2009, 48, 1244–1246; Nishizawa, M.; Imagawa, H.;
Yamamoto, H. Org. Biomol. Chem. 2010, 8, 511–521. and references therein.
10. Herranz, E.; Sharpless, K. B. Org. Synth. Coll. Vol. 1990, 7, 375–381.
11. El-Taeb, G. M. M.; Evans, A. B.; Knight, D. W.; Jones, S. Tetrahedron Lett. 2001,
42, 5945–5948.
12. Haskins, C. M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 599–601. and
references therein..
Acknowledgements
13. We have previously observed such intermediates in copper(I)-catalysed
cyclisations leading to pyrroles, see: Knight, D. W.; Sharland, C. M. Synlett
2004, 119–121; and Sharland, C. M. unpublished results, and from
iodocyclisations, see: Knight, D. W.; Rost, H. C.; Sharland, C. M.; Singkhonrat,
J. Tetrahedron Lett. 2007, 48, 7906–7910.
We are grateful to the EPSRC, to GSK Ltd. and the Government
of Thailand for financial support.
14. For an excellent summary of such silver-catalysed processes, see: Weibel, J.-
M.; Blanc, A.; Pale, P. Chem. Rev. 2008, 108, 3149–3173.
References and notes
15. Dunford, D.; Guyader, M.; Jones, S.; Knight, D. W.; Hursthouse, M. B.; Coles, S. J.
Tetrahedron Lett. 2008, 49, 2240–2242.
16. For an extensive overview of the use of ‘coinage’ metals in heterocyclic
synthesis, see: Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395–3442.
1. Hayes, S. J.; Knight, D. W.; Menzies, M. D.; O’Halloran, M.; Tan, W.-F.
Tetrahedron Lett. 2007, 48, 7709–7712.
2. Battersby, A. R. Proc. Royal. Soc. London., Series B-BioSci. 1985, 225,
1–26.