2154
Russ.Chem.Bull., Int.Ed., Vol. 59, No. 11, November, 2010
Sosnovskikh et al.
cording to the standard procedures. Chromones 1a,b and 3a
(R´ = Pri) have been described earlier.2,3
(C(8´)), 121.6 (C(3´)), 122.5 (C(4a´)), 124.5 (C(5a)), 125.5
(C(5´)), 125.6 (C(6´)), 126.0 (C(6)), 126.3 (C(7)), 134.6 (C(7´)),
136.5 (C(8)), 155.0 (C(8a´)), 155.3 (C(9a)), 158.5 (C(4)), 160.9
(C(2´)), 164.2 (C(2)), 165.2 (C(10a)), 173.0 (C(4´)), 175.7 (C(5)).
Dimer 10a was also obtained from 7a (40% yield) and 3a
(R´ = Pri) (28% yield) under similar conditions except that reflux
in acetic acid continued for 10—12 h.
7ꢀMethylꢀ2ꢀ(6ꢀmethylchromonꢀ3ꢀyl)ꢀ5Hꢀchromeno[2,3ꢀd]ꢀ
pyrimidinꢀ5ꢀone (10b). A solution of bisꢀimine 7b (200 mg,
0.5 mmol) in glacial acetic acid (3.5 mL) was refluxed for 12 h,
cooled, crystals formed were filtered off, washed with acetic
acid, ethanol, and dried. The yield was 53 mg (31%), yellow fine
crystal, m.p. 303—304 °C (cf. Ref. 3: m.p. 297 °C). 1H NMR, δ:
2.48 (s, 6 H, 2 Me); 7.68 (d, 1 H, H(8´), J = 8.6 Hz); 7.72
(d, 1 H, H(9), J = 8.6 Hz); 7.72 (dd, 1 H, H(7´), J = 8.6 Hz,
J = 2.3 Hz); 7.80 (dd, 1 H, H(8); J = 8.6 Hz, J = 2.3 Hz); 7.98
(d, 1 H, H(5´), J = 2.3 Hz); 8.02 (d, 1 H, H(6), J = 2.3 Hz); 9.09
(s, 1 H, H(2´)); 9.56 (s, 1 H, H(4)).
2ꢀAminoꢀ3ꢀ(2ꢀhydroxyphenyliminomethyl)chromone (3a)
(R´ = 2ꢀHOC6H4). A solution of chromone 9a (200 mg, 1.06 mmol)
and oꢀaminophenol (120 mg, 1.1 mmol) in dry toluene (5 mL)
was refluxed for 5 h, cooled, a precipitate formed was filtered
off, washed with toluene, and dried. The yield was 260 mg (88%),
yellow lamellar crystals, m.p. 225—227 °C. Found (%): C, 68.71;
H, 4.18; N, 10.08. C16H12N2O3. Calculated (%): C, 68.56;
H, 4.32; N, 9.99. IR, ν/cm–1: 3266, 3147, 1655, 1614, 1555,
1494, 1462. 1H NMR, δ: 6.84 (td, 1 H, H(5´), J = 7.5 Hz,
J = 1.4 Hz); 6.89 (dd, 1 H, H(3´), J = 8.0 Hz, J = 1.4 Hz); 7.03
(ddd, 1 H, H(4´), J = 8.0 Hz, J = 7.3 Hz, J = 1.6 Hz); 7.09 (dd, 1 H,
H(6´), J = 7.8 Hz, J = 1.6 Hz); 7.41—7.46 (m, 2 H, H(6), H(8));
7.71 (ddd, 1 H, H(7), J = 8.5 Hz, J = 7.2 Hz, J = 1.7 Hz); 8.05
(dd, 1 H, H(5), J = 7.8 Hz, J = 1.7 Hz); 9.00 (s, 1 H, =CH); 9.20
(br.s, 1 H, OH); 9.29 (br.s, 1 H, NH); 10.84 (br.s, 1 H, NH).
2ꢀAminoꢀ3ꢀ{2ꢀ[(2ꢀaminochromonꢀ3ꢀyl)methylidene]aminoꢀ
ethyl}iminomethylchromone (7a) was obtained according to the
procedure described earlier.6 The yield was 84%, m.p. 225—227 °C
(cf. Ref. 6: m.p. 210 °C for 8a). Found (%): C, 65.73; H, 4.53;
N, 14.00. C22H18N4O4. Calculated (%): C, 65.66; H, 4.51;
N, 13.92. 1H NMR, δ: 3.81 (s, 2 H, CH2); 7.35 (dd, 1 H, H(8),
J = 8.2 Hz, J = 1.0 Hz); 7.36 (ddd, 1 H, H(6), J = 8.2 Hz,
J = 7.2 Hz, J = 1.0 Hz); 7.65 (ddd, 1 H, H(7), J = 8.2 Hz,
J = 7.2 Hz, J = 1.7 Hz); 7.97 (dd, 1 H, H(5), J = 8.2 Hz,
J = 1.7 Hz); 8.69 (s, 1 H, CH=N); 8.82 (s, 1 H, NH); 10.88
(s, 1 H, NH).
References
1. C. K. Ghosh, S. K. Karak, J. Heterocycl. Chem., 2005,
42, 1035.
2. V. Ya. Sosnovskikh, V. S. Moshkin, M. I. Kodess, Izv. Akad.
Nauk, Ser. Khim., 2010, 602 [Russ. Chem. Bull., Int. Ed.,
2010, 59, 615].
3. C. K. Ghosh, N. Tewari, J. Org. Chem., 1980, 45, 1964.
4. F. Risitano, G. Grassi, F. Foti, J. Heterocycl. Chem., 2001,
38, 1083.
5. V. Ya. Sosnovskikh, V. S. Moshkin, M. I. Kodess, Tetraheꢀ
dron Lett., 2009, 50, 6515.
6. C. K. Ghosh, N. Tewari, C. Bandyopadhyay, Ind. J. Chem.,
1983, 22B, 1200.
7. J. Dusemund, T. Schurreit, Arch. Pharm. (Weinheim, Ger.),
1984, 317, 377.
8. C. K. Ghosh, C. Ghosh, A. Patra, Ind. J. Chem., 1998,
37B, 387.
2ꢀAminoꢀ6ꢀmethylꢀ3ꢀ{2ꢀ[(2ꢀaminoꢀ6ꢀmethylchromonꢀ3ꢀyl)ꢀ
methylidene]aminoethyl}iminomethylchromone (7b) was obtained
according to the procedure described earlier.6 The yield
was 86%, m.p. 233—235 °C (cf. Ref. 6: m.p. 215 °C for 8b).
Found (%): C, 66.63; H, 5.16; N, 13.12. C24H22N4O4. Calculatꢀ
1
ed (%): C, 66.97; H, 5.15; N, 13.02. H NMR, δ: 2.37 (s, 3 H,
Me); 3.80 (s, 2 H, CH2); 7.25 (d, 1 H, H(8), J = 8.3 Hz); 7.46
(dd, 1 H, H(7), J = 8.3 Hz, J = 1.8 Hz); 7.75 (s, 1 H, H(5)); 8.67
(s, 1 H, CH=N); 8.78 (s, 1 H, NH); 10.83 (s, 1 H, NH).
2ꢀ(Chromonꢀ3ꢀyl)ꢀ5Hꢀchromeno[2,3ꢀd]pyrimidinꢀ5ꢀone (10a).
A solution of chromone 3a (R´ = 2ꢀHOC6H4) (200 mg,
0.71 mmol) in glacial acetic acid (5 mL) was refluxed for 3 h,
partially concentrated, followed by addition of water (5 mL).
A precipitate formed on cooling was filtered off, washed with
dilute acetic acid, and dried. The yield was 73 mg (60%), a yellow
powder, m.p. 254—256 °C (cf. Ref. 7: m.p. 254 °C). 1H NMR, δ:
7.59 (ddd, 1 H, H(6´), J = 7.9 Hz, J = 7.2 Hz, J = 1.0 Hz); 7.60
(ddd, 1 H, H(7), J = 7.9 Hz, J = 7.2 Hz, J = 1.0 Hz); 7.78 (dd, 1 H,
H(8´), J = 8.5 Hz, J = 1.0 Hz); 7.81 (dd, 1 H, H(9), J = 8.5 Hz,
J = 1.0 Hz); 7.90 (ddd, 1 H, H(7´), J = 8.5 Hz, J = 7.2 Hz,
J = 1.7 Hz); 7.98 (ddd, 1 H, H(8), J = 8.5 Hz, J = 7.2 Hz,
J = 1.7 Hz); 8.20 (dd, 1 H, H(5´), J = 7.9 Hz, J = 1.7 Hz); 8.22
(dd, 1 H, H(6), J = 7.9 Hz, J = 1.7 Hz); 9.14 (s, 1 H, H(2´)); 9.57
(s, 1 H, H(4)). 13C NMR, δ: 112.6 (C(4a)), 118.6 (C(9)), 118.7
9. C. K. Ghosh, D. K. SinhaRoy, K. K. Mukhopadhyay,
J. Chem. Soc., Perkin Trans. 1, 1979, 1964.
10. V. Ya. Sosnovskikh, V. S. Moshkin, M. I. Kodess, Tetraꢀ
hedron Lett., 2008, 49, 6856.
11. V. Ya. Sosnovskikh, V. S. Moshkin, M. I. Kodess, J. Heteroꢀ
cycl. Chem., 2010, 47, 629.
12. V. Ya. Sosnovskikh, M. I. Kodess, V. S. Moshkin, Izv. Akad.
Nauk, Ser. Khim., 2009, 1218 [Russ. Chem. Bull., Int. Ed.,
2009, 58, 1253].
13. K. Ukawa, T. Ishiguro, Y. Wada, A. Nohara, Heterocycles,
1986, 24, 1931.
Received July 8, 2010;
in revised form October 13, 2010