H. V. Le et al. / Tetrahedron Letters 52 (2011) 2209–2211
2211
R3
R3
R2
O
R2
Acknowledgments
N
N
R1
R1
NH—n-Bu
O—n-Bu
H
The authors thank Messrs. Henry Kaweesi and Alexei Aidan for
helpful experimental assistance. Support of the Cornell NMR Facil-
ity has been provided by NSF (CHE 7904825; PGM 8018643) and
NIH (RR02002).
R1
O
5
6
(a) R1= Ph, R2= Bz, R3= Bn
(b) R1= Ph, R2= Ac, R3= Bn
Supplementary data
Scheme 3.
Supplementary data (representative experimental procedures
and complete spectroscopic data for new reactants and products
shown in Tables 1–3) associated with this article can be found, in
The resistance of Ugi amides 3a–e to nitrosation made it
possible to selectively deprotect a Passerini t-butylamide in the
presence of an Ugi t-butylamide. Nitrosation of a 1:1 mixture of
1b and 3e using Method A afforded 2b in 54% yield (96% based
on recovered 1b) compound 3e was recovered quantitatively.
It was of interest to determine whether n-butylisonitrile might
serve as a convertible isonitrile for Ugi reactions by enabling an
amide-to-ester conversion of the corresponding N-(n-butyl)amide
product.14 Ugi compounds 5a–b (Scheme 3) incorporating n-butyl-
isonitrile underwent smooth nitrosation using Method A to afford
the corresponding N-nitrosoamides (not shown) following the
standard workup. Upon heating to reflux in hexane, the desired
n-butylesters 6a and 6b were produced in 80% and 83% overall
yield, respectively.
In summary, the studies presented herein demonstrate that t-
butylisonitrile can serve as an inexpensive, efficient, and readily
available ‘convertible isonitrile’ in Passerini and related multicom-
ponent reactions. To the best of our knowledge, t-butylisonitrile is
the first isonitrile whose amide-to-acid ‘conversion’ is compatible
with preexisting ester functionality in MCR products. We further
show that n-butylisonitrile may provide a viable alternative to
other convertible isonitriles for amide-to-ester transformations in
Ugi MCR products.
References and notes
1. (a) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51; (b) Dömling, A. Curr. Opin.
Chem. Biol. 2000, 4, 318.
2. Mironov, M. A. QSAR Comb. Sci. 2006, 25, 423.
3. Elders, N.; van der Born, D.; Hendrickx, L.; Timmer, B.; Krause, A.; Janssen, E.; de
Kanter, F.; Ruijter, E.; Orru, R. V. A. Angew. Chem., Int. Ed. 2009, 48, 5856.
4. (a) Dömling, A. Chem. Rev. 2006, 106, 17–89; (b) Dömling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3169–3210.
5. Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1995, 117, 7842.
6. Lindhorst, T.; Bock, H.; Ugi, I. Tetrahedron 1999, 55, 7411.
7. Pirrung, M. C.; Ghorai, S. J. Am. Chem. Soc. 2006, 128, 11772.
8. (a) White, E. H. J. Am. Chem. Soc. 1955, 77, 6008; (b) White, E. H. J. Am. Chem. Soc.
1955, 77, 60011.
9. Birney, D. M. Org. Lett. 2004, 6, 851.
10. (a) Nikolaides, N.; Ganem, B. J. Org. Chem. 1989, 54, 5996; (b) Godfrey, A. G.;
Ganem, B. J. Am. Chem. Soc. 1990, 112, 3717; (c) Nikolaides, N.; Ganem, B.
Tetrahedron Lett. 1990, 31, 1113; (d) Nikolaides, N.; Godfrey, A. G.; Ganem, B.
Tetrahedron Lett. 1990, 31, 6009.
11. (a) Lacey, R. N. J. Chem. Soc. 1960, 1633; (b) Mahalingam, A. K.; Wu, X.;
Alterman, M. Tetrahedron Lett. 2006, 3051; (c) Takacs, E.; Varga, C.; Skoda-
Foldes, R.; Kollar, L. Tetrahedron Lett. 2007, 48, 2453.
12. Kumar, J. S.; Jonnalagadda, S. C.; Mereddy, V. R. Tetrahedron Lett. 2010, 51, 779.
13. Romea, P.; Urpi, F.; Vilarrasa, J. J. Org. Chem. 1989, 54, 3209.
14. Hulme et al. recently reported an alternative use of n-C4H9NC expedited with
microwaves as a convertible isonitrile for heterocycle synthesis: Hulme, C.;
Chappeta, S.; Dietrich, J. Tetrahedron Lett. 2009, 50, 4054.