Journal of the American Chemical Society
Page 10 of 12
(17) Singh, Y.; Wang, T.; Geringer, S. A.; Stine, K. J.; Demchenko,
A. V. Regenerative Glycosylation. J. Org. Chem. 2018, 83, 374–
381.
Corresponding Authors
1
2
3
4
5
6
7
8
9
(18) Tanaka, M.; Nakagawa, A.; Nishi, N.; Iijima, K.; Sawa, R.;
Takahashi, D.; Toshima, K. Boronic-Acid-Catalyzed Regioselec-
tive and 1,2-cis-Stereoselective Glycosylation of Unprotected
Sugar Acceptors via SNi-Type Mechanism. J. Am. Chem. Soc.
2018, 140, 3644−3651.
(19) Yang, T.; Zhu, F.; Walczak, M. A. Stereoselective Oxidative
Glycosylation of Anomeric Nucleophiles with Alcohols and Car-
boxylic Acids. Nature Commun. 2018, 9, 3650.
(20) Levi S. M.; Li, Q.; Rötheli, A. R.; Jacobsen, E. N. Catalytic
Activation of Glycosyl Phosphates for Stereoselective Coupling
Reactions. PNAS 2019, 116, 35–39.
(21) Meng, L.; Wu, P.; Fang, J.; Xiao, Y.; Xiao, X.; Tu, G.; Ma, X.;
Teng, S.; Zeng, J.; Wan, Q. Glycosylation Enabled by Successive
Rhodium (II) and Brønsted Acid Catalysis. J. Am. Chem. Soc. DOI:
10.1021/jacs.9b04619.
(22) Zeng, J.; Wang, R.; Zhang, S.; Fang, J.; Liu, S.; Sun, G.; Xu,
B.; Xiao, Y.; Fu, D.; Zhang, W.; Hu, Y.; Wan Q. Hydrogen-
Bonding-Assisted Exogenous Nucleophilic Reagent Effect for
β Selective Glycosylation of Rare 3-Amino Sugars. J. Am. Chem.
Soc. 2019, 141, 8509−8515.
(23) Hoang, K. M.; Lees, N. R.; Herzon, S. B. Programmable
Synthesis of 2 Deoxyglycosides. J. Am. Chem. Soc. 2019, 141,
8098−8103.
ORCID
Clay S. Bennett: 0000-0001-8070-4988
Eugene E. Kwan: 0000-0001-7037-0531
Notes
The authors declare no competing financial interest.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
The authors thank the NIH for financial support (grant U01-
GM120414).
REFERENCES
(1) Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G.
H.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Preste-
gard, J. H.; Schnaar, R. L.; Seeberger, P. H.; Eds., Essentials of
Glycobiology (Cold Spring Harbor Laboratory Press, ed 3, 2015).
(2) Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D.
The Experimental Evidence in Support of Glycosylation Mecha-
nisms at the SN1-SN2 Interface. Chem. Rev. 2018, 118, 8242–8284.
(3) Hagen, B.; van der Vorm, S.; Hansen, T.; van der Marel, G. A.;
Codée, J. D. C. Stereoselective Glycosylations–Additions to Oxo-
carbenium Ions. In Selective Glycosylations: Synthetic Methods
and Catalysts; C. Bennett ed.; Wiley-VCH: Weinheim, 2017, 3–
26.
(4) Mensah, E. A.; Nguyen, H. M. Nickel-Catalyzed Stereoselec-
tive Formation of α-2-Deoxy-2-Amino Glycosides. J. Am. Chem.
Soc. 2009, 131, 8778–8780.
(5) Cox, D. J.; Smith, M. D.; Fairbanks A. J. Glycosylation Cata-
lyzed by a Chiral Brønsted Acid. Org. Lett. 2010, 12, 1452–1455.
(6) Lu, S.-R.; Lai, Y.-H.; Chen, J.-H.; Liu, C.-Y.; Mong, K.-K. T.
Dimethylformamide: An Unusual Glycosylation Modulator. An-
gew. Chem. Int. Ed. 2011, 50, 7315–7320.
(7) Kimura, T.; Sekine, M.; Takahashi, D.; Toshima, K. Chiral
Brønsted Acid Mediated Glycosylation with Recognition of Alco-
hol Chirality. Angew. Chem. Int. Ed. 2013, 52, 12131–12134.
(8) Padungros, P.; Alberch, L.; Wei, A. Glycosyl Dithiocarba-
mates: β-Selective Couplings without Auxiliary Groups. J. Org.
Chem. 2014, 79, 2611–2624.
(9) Peng, P.; Schmidt, R. R. An Alternative Reaction Course in
O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glyco-
syl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base
Catalysis with Gold Chloride-Glycosyl Acceptor Adducts. J. Am.
Chem. Soc. 2015, 137, 12653–12659.
(10) Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Stereocon-
trolled Photoinduced Glycosylation Using an Aryl Thiourea as an
Organo photoacid. Org. Lett. 2016, 18, 3190–3193.
(11) D'Angelo, K. A.; Taylor, M. S. Borinic Acid Catalyzed Ste-
reo- and Regioselective Couplings of Glycosyl Methanesulfonates.
J. Am. Chem. Soc. 2016, 138, 11058–11066.
(24) Hu, Z.; Tang, Y.; Yu, B. Glycosylation with 3,5-Dimethyl-4-
(2′-phenylethynylphenyl)-phenyl (EPP) Glycosides via
a
Dearomative Activation Mechanism. J. Am. Chem. Soc. 2019, 141,
4806−4810.
(25) Yu, F.; Li, J.; DeMent, P. M.; Tu, Y.-J.; Schlegel, H. B.;
Nguyen, H. M.; Phenanthroline-Catalyzed Stereoretentive Glyco-
sylations. Angew. Chem. Int. Ed. 2019, 58, 6957–6961.
(26) National Research Council Transforming Glycoscience: A
Roadmap for the Future. The National Academies Press: Wash-
ington DC, 2012, 86−93.
(27) Issa, J. P.; Lloyd, D.; Bennett, C. S. Reagent Controlled β-
Specific Dehydrative Glycosylation Reactions with 2-Deoxy-
Sugars. Org. Lett. 2013, 15, 4170–4173.
(28) Issa, J. P.; Bennett, C. S. A Reagent-Controlled SN2-
Glycosylation for the Direct Synthesis of β-Linked 2-Deoxy-
Sugars. J. Am. Chem. Soc. 2014, 136, 5740–5744.
(29) Lloyd, D.; Bennett, C. S. An Improved Approach to the Di-
rect Construction of 2-Deoxy-β-Linked Sugars: Applications to
Oligosaccharide Synthesis. Chem. Eur. J. 2018, 24, 7610 –7614.
(30) Chen, J.-H.; Ruei, J.-H.; Mong, K.-K. T. Iterative α-
Glycosylation Strategy for 2-Deoxy- and 2,6-Dideoxysugars: Ap-
plication to the One-Pot Synthesis of Deoxysugar-Containing
Oligosaccharides. Eur. J. Org. Chem. 2014, 1827–1831.
(31) Eby, R.; Schuerch, C. The Use of 1-O-Tosyl-D-
Glucopyranose Derivatives in α-D-Glucoside Synthesis. Carbo-
hydr. Res. 1974, 34, 79–90.
(32) Koto, S.; Hamada, Y.; Zen, S. Direct Glucosidation of
2,3,4,6-Tetra-O-Benzyl-α-D-Glucopyranose. Chem. Lett. 1975,
587-588.
(33) Lucas, T. J.; Schuerch, C. Methanolysis as a Model Reaction
for Oligosaccharide Synthesis of Some 6-Substituted 2,3,4-Tri-O-
Benzyl-D-Galactopyranosyl Derivatives. Carbohydr. Res. 1975, 39,
39-45.
(34) Leroux, J.; Perlin, A. S. A New Synthesis of Glycosides.
Reactions of Trifluoromethanesulfonic Anhydride at the Anomeric
Centre. Carbohydr. Res. 1976, 47, C8–C–10.
(35) Maroušek, V.; Lucas, T. J.; Wheat, P. E.; Schuerch, C. The
Influence of Reactant Structure and Solvent on Galactoside Syn-
theses from Galactosyl Sulfonates. Carbohydr. Res. 1978, 60, 85–
96.
(12) Sun, L.; Wu, X.; Xiong, D.-C.; Ye, X.-S. Stereoselective
Koenigs-Knorr Glycosylation Catalyzed by Urea. Angew. Chem.
Int. Ed. 2016, 55, 8041–8044.
(13) Palo-Nieto, C.; Sau, A.; Galan, M. C. Gold(I)-Catalyzed Di-
rect Stereoselective Synthesis of Deoxyglycosides from Glycals. J.
Am. Chem. Soc. 2017, 139, 14041–14044.
(14) Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.;
Jacobsen, E. N. Macrocyclic bis-Thioureas Catalyze Stereospecific
Glycosylation Reactions. Science 2017, 355, 162–166.
(15) Lee, J.; Borovika, A.; Khomutnyk, Y.; Nagorny, P. Chiral
Phosphoric Acid-Catalyzed Desymmertizative Glycosylation of 2-
Deoxystreptamine and its Application to Aminoglycoside Synthe-
sis. Chem. Commun. 2017, 53, 8976–8979.
(36) Srivastava, V. K.; Schuerch, C.
A Synthesis of β-D-
Mannosides by Glycosidation at C-1. Carbohydr. Res. 1980, 79,
C13–C16.
(37) Koto, S.; Sato, T.; Morishima, N.; Zen, S. The Glucosylation
(16) Lin, J.-L.; Zhang, Y.-T.;Liu, H.-F.; Zhou, L.; Chen, J.
N_Heterocyclic Carbene Catalyzed Stereoselective Glycosylation
of 2-Nitrogalactals. Org. Lett. 2017, 19, 5272–5275.
of Several Alcohols with Tetra-O-Benzyl-α-D-Glucopyranose and
ACS Paragon Plus Environment