ORGANIC
LETTERS
2011
Vol. 13, No. 10
2754–2757
CuAAC Macrocyclization: High
Intramolecular Selectivity through the Use of
CopperÀTris(triazole) Ligand Complexes
Gagan Chouhan and Keith James*
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines
Road, La Jolla, California 92014, United States
Received April 2, 2011
ABSTRACT
A range of multivalent heteroaryl ligands, copper sources, and solvent systems have been investigated for use in CuAAC-mediated macrocyclization
reactions. These studies have revealed the key factors governing selectivity for macrocyclization versus dimerization and identified a simple but specific
set of reaction conditions capable of efficiently generating a diverse series of drug-like macrocycles at modest dilution in up to 95% yield.
The design of macrocycles with drug-like structures and
properties is an area of growing interest.1 Consequently,
there is a need for efficient macrocyclization methodolo-
gies that are capable of generating drug-like structures at
reasonable scale without having to resort to high dilution
conditions. The copper-catalyzed azide-alkyne cycloaddi-
tion (CuAAC) reaction has emerged as an especially
valuable transformation,2 which generates a useful hetero-
cyclic product (a 1,4-substituted 1,2,3-triazole) and can
be used to close macrocyclic rings.3 However, CuAAC
macrocyclizations are still limited by the requirement for
high dilution conditions in order to avoid intermolecular
reactions, which is nonideal from practical, solvent con-
sumption, and reaction rate perspectives.
copper tube flow reactors,4 both of which aim to exploit a
pseudo-dilution effect associated with heterogeneous
(3) For recent selected examples of peptidic and nonpeptidic macro-
cycle synthesis via CuAAC reactions, see: (a) Angell, Y. L.; Burgess, K.
Chem. Soc. Rev. 2007, 36, 1674–1689 and references therein. (b) Haridas,
V.; Lal, K.; Sharma, Y. K.; Upreti, S. Org. Lett. 2008, 10, 1645–1647. (c)
Rowley Kelly, A.; Wei, J.; Kesavan, S.; Marie, J.-C.; Windmon, N.;
Young, D. W.; Marcaurelle, L. A. Org. Lett. 2009, 11, 2257–2260. (d)
Muthana, S.; Yu, H.; Cao, H.; Cheng, J.; Chen, X. J. Org. Chem. 2009,
74, 2928–2936. (e) Binauld, S.; Hawker, C. J.; Fleury, E.; Drockenmuller,
E. Angew. Chem., Int. Ed. 2009, 48, 6654–6658. (f) Latyshev, G. V.;
Baranov, M. S.; Kazantsev, A. V.; Averin, A. D.; Lukashev, N. V.;
Beletskaya, I. P. Synthesis 2009, 15, 2605–2615. (g) Day, J. E. H.; Sharp,
S. Y.; Rowlands, M. G.; Aherne, W.; Workman, P.; Moody, C. J.
Chem.;Eur. J. 2010, 16, 2758–2763. (h) Pirali, T.; Faccio, V.; Mossetti,
R.; Grolla, A. A.; Di Micco, S.; Bifulco, G.; Genazzani, A. A.; Tron,
G. C. Mol. Diversity 2010, 14, 109–121. (i) Holub, J. M.; Kirshenbaum,
K. Chem. Soc. Rev. 2010, 39, 1325–1337. (j) Hu, T.-S.; Tannert, R.;
Arndt, H.-D; Waldmann, H. Chem. Commun. 2007, 3942–3944. (k)
Berkel, S. S.; van Lee, B.; van der Delft, F. L.; van Rutjes, F. P. J. T.
Chem. Commun. 2009, 4272–4274. (l) Marcaurelle, L. A.; Comer, E.;
Dandapani, S.; Duvall, J. R.; Gerard, B.; Kesavan, S.; Lee, M. D.; Liu,
H.; Lowe, J. T.; Marie, J.-C.; Mulrooney, C. A.; Pandya, B. A.; Rowley,
A.; Ryba, T. D.; Suh, B.-C.; Wei, J.; Young, D. W.; Akella, L. B.; Ross,
N. T.; Zhang, Y.-L.; Fass, D. M.; Reis, S. A.; Zhao, W.-N.; Haggarty,
S. J.; Palmer, M.; Foley, M. A. J. Am. Chem. Soc. 2010, 132, 16962–
16976. (m) Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N.
Org. Lett. 2010, 12, 1064–1067. (n) Jacobsen, Ø.;Maekawa, H.;Ge, N.-H.;
Recent approaches to address the issue of concentra-
tion-dependent intra- versus intermolecular reaction in-
clude the use of solid-supported copper catalysts3b and
(1) (a) Driggers, E. M.; Hale, S. P.; Jinbo Lee, J.; Terrett, N. K. Nat.
Rev. Drug Discovery 2008, 7, 608–624. (b) Marsault, E.; Peterson, M. L.
J. Med. Chem. 2011, 54, 1961–2004. Madsen, C. M.; Clausen, M. H. Eur.
J. Org. Chem. 2011, DOI: 10.1002/ejoc.201001715.
(2) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (c) Wu, P.;
Fokin, V. V. Aldrichimica Acta 2007,40, 7–17. (d) Tornøe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064. (e) Lahann, J. Click
Chemistry for Biotechnology and Materials Science; Wiley & Sons: New York,
2009. (f) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952–3015.
€
Gorbitz, C. H.; Rongved, P.; Ottersen, O. P.; Amiry-Moghaddam, M.;
Klaveness, J. J. Org. Chem. 2011, 76, 1228–1238. (o) Pedersen, D. S.; Abell,
A. Eur. J. Org. Chem. 2011, 13, 2399–2411. (p) Isidro-Llobeta, A.; Murilloa,
T.; Belloa, P.; Cilibrizzia, A.; Hodgkinson, J. T.; Galloway, W. R. J. D.;
Bender, A.; Welch, M.; Spring, D. A. Proc. Natl. Acad. Sci. U.S.A. 2011,
DOI: /10.1073/pnas.1015267108.
r
10.1021/ol200861f
Published on Web 04/28/2011
2011 American Chemical Society