configurational and conformational analysis of a wide
range of substrates. Rosini and Toniolo have successfully
used this concept for the assignment of the absolute
configuration of chiral amino acids, carboxylic acids, and
alcohols that were covalently attached to a stereodynamic
biphenyl probe.9
To date, few compounds bearing a diarylacetylene motif
which typically undergoes fast rotation about the triple
bond at room temperature have been reported.15 The
molecular bias for almost frictionless rotation has been
exploitedforthe development ofmolecular turnstiles16 and
gyroscopes.17 Based on the potential of 1,3-diarylacety-
lenes as versatile stereodynamic units in molecular devices,
probes, and other applications, we decided to evaluate a
series of arylacetylene-based frameworks having a well-
defined intramolecular separation and relative orientation
of terminal formyl groups. The molecular geometry of
these structures would either favor or prevent [1 þ 1]-
cyclocondensation with diamines. We now report that the
design of the CD silent arylacetylene moiety of four
stereodynamic dialdehydes directs the reaction with dia-
mines toward a [1 þ 1]- or [2 þ 2]-assembly that provides a
distinct chiroptical response to a substrate-controlled chir-
al amplification process. We assumed that bridging of 1,
4-di(2-formylphenyl)buta-1,3-diyne, 2, and 1,4-bis(2-form-
ylphenylethynyl)benzene, 3, through cyclocondensation
with a diamine would be geometrically impossible and
thus favor formation of a large macrocyclic tetraimine via
[2 þ 2]-cyclocondensation (Figure 1). By contrast, 1,4-bis-
(2(2-formyl-1-naphthylethynyl)phenylethynyl)benzene, 4,
and 1,4-bis(2(2-formylphenylethynyl)phenylethynyl)anthra-
cene, 5, were expected to favor a [1 þ 1]-assembly.
In recent years, we have investigated the stereodynamic
properties of a wide range of axially chiral compounds10
and used 1,8-diquinolyl- and 1,8-diacridylnaphthalenes as
UV and fluorescence sensors for quantitative analysis of
the enantiomeric composition of carboxylic acids, amino
acids, amines, and amino alcohols.11 These sensorsprovide
accurate information about the ee and amount of a wide
range of substrates often at micromolar concentrations.12
We then realized that rapidly racemizing chromophoric
probes exhibit strong Cotton effects if the binding event locks
the stereodynamic sensor into a single chiral conformation.13
For example, 1,4-bis(2(2-formylphenylethynyl)phenyleth-
ynyl)benzene, 1, reacts with chiral diamines to a highly CD
active macrocycle showing substrate-controlled induction
of three chiral axes upon diimine formation.14
(9) (a) Superchi, S.; Casarini, D.; Laurita, A.; Bavoso, A.; Rosini, C.
Angew. Chem., Int. Ed. 2001, 40, 451. (b) Hosoi, S.; Kamiya, M.; Kiuchi,
F.; Ohta, T. Tetrahedron Lett. 2001, 42, 6315. (c) Mazaleyrat, J.-P.;
Wright, K.; Gaucher, A.; Toulemonde, N.; Wakselman, M.; Oancea, S.;
Peggion, C.; Formaggio, F.; Setnicka, V.; Keiderling, T. A.; Toniolo, C.
J. Am. Chem. Soc. 2004, 126, 12874. (d) Mazaleyrat, J.-P.; Wright, K.;
Gaucher, A.; Toulemonde, N.; Dutot, L.; Wakselman, M.; Broxterman,
Q. B.; Kaptein, B.; Oancea, S.; Peggion, C.; Crisma, M.; Formaggio, F.;
Toniolo, C. Chem.;Eur. J. 2005, 11, 6921. (e) Superchi, S.; Bisaccia, R.;
Casarini, D.; Laurita, A.; Rosini, C. J. Am. Chem. Soc. 2006, 128, 6893.
(f) Dutot, L.; Wright, K.; Gaucher; Wakselman, M.; Mazaleyrat, J.-P.;
De Zotti, M.; Peggion, C.; Formaggio, F.; Toniolo, C. J. Am. Chem. Soc.
2008, 130, 5986.
(10) (a) Wolf, C.; Ghebramariam, B. T. Tetrahedron: Asymmetry
2002, 13, 1153. (b) Wolf, C.; Tumambac, G. E. J. Phys. Chem. A 2003,
107, 815. (c) Tumambac, G. E.; Wolf, C. J. Org. Chem. 2004, 69, 2048.
(d) Wolf, C. Chem. Soc. Rev. 2005, 34, 595. (e) Tumambac, G. E.; Wolf,
C. J. Org. Chem. 2005, 70, 2930. (f) Wolf, C.; Xu, H. Tetrahedron Lett.
2007, 48, 6886. For a general overview of the stereodynamics of chiral
compounds, see: Wolf, C., Ed. Dynamic Stereochemistry of Chiral
Compounds; RSC Publishing: Cambridge, 2008.
(11) (a) Mei, X.; Wolf, C. Chem. Commun. 2004, 2078. (b) Mei, X.;
Wolf, C. J. Am. Chem. Soc. 2004, 126, 14736. (c) Tumambac, G. E.;
Wolf, C. Org. Lett. 2005, 7, 4045. (d) Mei, X.; Martin, R. M.; Wolf, C.
J. Org. Chem. 2006, 71, 2854. (e) Liu, S.; Pestano, J. P. C.; Wolf, C.
J. Org. Chem. 2008, 73, 4267. (f) Mei, X.; Wolf, C. Tetrahedron Lett.
2006, 47, 7901. (g) Wolf, C.; Liu, S.; Reinhardt, B. C. Chem. Commun.
2006, 4242. (h) Mei, X.; Wolf, C. J. Am. Chem. Soc. 2006, 128, 13326.
(i) Liu, S.; Pestano, J. P. C.; Wolf, C. J. Org. Chem. 2008, 73, 4267.
(12) For a discussion of the general significance of molecular sensing,
see: Anslyn, E. V. J. Am. Chem. Soc. 2010, 132, 15833.
Figure 1. Structures of dialdehydes 2 to 5 (top) and [1 þ 1]- and
[2 þ 2]-assembled macrocycles (bottom).
(13) (a) Ghosn, M. W.; Wolf, C. J. Am. Chem. Soc. 2009, 131, 16360.
(b) Wolf, C. Tetrahedron 2010, 66, 3989.
(14) Iwaniuk, D. P.; Wolf, C. J. Am. Chem. Soc. 2011, 133, 2414.
Dialdehyde 2 was readily available through oxidative
homocoupling of 2-ethynylbenzaldehyde as described in
the literature (Scheme 1).18 The elongated analogue 3 was
prepared by Sonogashira coupling of 2-bromobenzalde-
hyde and 1,4-diethynylbenzene in 80% yield. Slow eva-
poration of a solution of 2 in dichloromethane gave single
crystalssuitable forX-ray diffraction. Thecrystallographic
analysis of 3 showed the expected linear geometry and the
lack of steric hindrance to rotation about the arylꢀalkyne
bonds. As discussed above, we expected that the geo-
metry of 2 and 3 would afford tetraimine macrocycles upon
€
(15) (a) Koo Tze Mew, P.; Vogtle, F. Angew. Chem., Int. Ed. Engl.
1979, 18, 159. (b) Toyota, S.; Yamamori, T.; Asakura, M.; Oki, M. Bull.
Chem. Soc. Jpn. 2000, 73, 205. (c) Toyota, S.; Iida, T.; Kunizane, C.;
Tanifuji, N.; Yoshida, Y. Org. Biomol. Chem. 2003, 1, 2298. (d) Toyota,
S.; Makino, T. Tetrahedron Lett. 2003, 44, 7775. (e) Miljanic, O. S.; Han,
S.; Holmes, D.; Schaller, G. R.; Vollhardt, K. P. C. Chem. Commun.
2005, 2606. (f) Nandy, R.; Subramoni, M.; Varghese, B.; Sankararaman,
S. J. Org. Chem. 2007, 72, 938.
(16) Bedard, T. C.; Moore, J. S. J. Am. Chem. Soc. 1995, 117, 10662.
(17) (a) Dominguez, Z.; Dang, H.; Strouse, M. J.; Garcia-Garibay,
M. A. J. Am. Chem. Soc. 2002, 124, 2398. (b) Dominguez, Z.; Dang, H.;
Strouse, M. J.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124,
7719. (c) Khuong, T.-A. V.; Dang, H.; Jarowski, P. D.; Maverick, E. F.;
Garcia-Garibay, M. A. J. Am. Chem. Soc. 2007, 129, 839. (d) Jarowski,
P. D.; Houk, K. N.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2007, 129,
3110. (e) Garcia-Garibay, M. A.; Godinez, C. Cryst. Growth Des. 2009,
9, 3124. (f) Toyota, S. Chem. Rev. 2010, 110, 5398.
(18) Ojima, J.; Yanamato, K.; Kato, T.; Wada, K.; Yoneyama, Y.;
Ejiri, E. Bull. Chem. Soc. Jpn. 1986, 59, 2209.
Org. Lett., Vol. 13, No. 10, 2011
2603