10.1002/anie.201803043
Angewandte Chemie International Edition
COMMUNICATION
(A)
HO
O
OH
substantiated in high total yield (93%) and high ee (96%) by
combination of ReOx-Pd/CeO2 and Ir-ReOx/SiO2 catalysts.
H2O, -CH3OH
Removal of
ReOx-Pd/CeO2
(a)
(b)
(c)
8 MPa H2, H2O
1,4-dioxane, 393 K, 4 h
dideoxy ribofuranose
Total Yield 97%
OCH3
HO
O
H2O, -CH3OH, H2
OCH3
2 H2, -2H2O
HO
OH
Keywords: Sugar, Deoxydehydration, hydrogenation,
HO
O
ReOx-Pd/CeO2
8 MPa H2, H2O
1,4-dioxane,
393 K, 48 h
ReOx-Pd/CeO2
8 MPa H2
1,4-dioxane
413 K, 25 h
OH
(2S)-1,2,5-pentanetriol
HO
methyl β-D-
ribofuranoside
Conversion >99%
OH
heterogeneous catalyst, Rhenium, Cerium oxide
methyl β-D-2,3-
dideoxy-ribofuranoside
Total yield 97% (a94%)
96% ee
HO
O
H2, -CH3OH
Rh-ReOx/SiO2
8 MPa H2
[1] J. J. Bozell, G. R. Peterson, Green Chem. 2010, 12, 539-554.
[2] J. N. Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem. Int. Ed. 2007,
46, 7164-7183.
Removal of
ReOx-Pd/CeO2
1,4-dioxane + n-heptane
393 K, 24 h
tetrahydrofurfuryl alcohol
Total yield 91%
[3] J. C. Serrano-Ruiz, J. A. Dumesic, Energy Environ. Sci. 2011, 4, 83-99.
[4] Y. Román-Leshkov, J. N. Chheda, J. A. Dumesic, Science 2006, 312,
1933-1937.
H2
HO
OH
Hydrogenolysis
Established technique
1,5-pentanediol
yield~up to 94%
(B)
OH
[5] G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science 2005,
308, 1446-1450.
O
O
2 H2, -2H2O
H2O, -CH3OH, H2
HO
Rh-ReOx/SiO2
8 MPa H2, H2O
1,4-dioxane
393 K, 1 h
OH
OH
ReOx-Pd/CeO2
8 MPa H2
1,4-dioxane
413 K, 72 h
HO
OH
OH
[6] J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Science
2010, 327, 1110-1114.
OCH3
(2R)-1,2,5-pentanetriol
Total yield 95%
95% ee
OCH3
methyl β-L-3,4-dideoxy-
arabinopyranoside
methyl β-L-
arabinopyranoside
Conversion >99%
[7] H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-
1600.
(C)
HO
[8] R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J.
Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597.
[9] G. W. Huber, R. D. Cortright, J. A. Dumesic, Angew. Chem. Int. Ed. 2004,
43, 1549-1551; Angew. Chem. 2004, 116, 1575–1577.
[10] R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, J. A.
Dumesic, Appl. Catal. B 2005, 56, 171-186.
OCH3
O
HO
O
HO
O
OH
CH3OH, -H2O
+
OCH3
OH
Ir-ReOx/SiO2
CH3OH
r.t., 24 h, air
HO OH
D-ribose
Conversion >99%
HO
HO
OH
Yield (%)
79
19
OCH3
2H2, -2H2O
HO
O
HO
O
Ir-ReOx/SiO2 + ReOx-Pd/CeO2
CH3OH
+
OCH3
OH
[11] Deoxy sugars: occurrence and synthesis; R. M. De Lederkremer, C.
Marino, in Advances in Carbohydrate Chemistry and Biochemistry,
Derek Horton Ed. Elsevier: 2007, vol. 61, pp. 143-216.
[12] V. Křen T. Řezanka, FEMS Microbiol. Rev. 2008, 32, 858-859 (2008).
[13] T. G. Frihed, M. Bols, C. M. Pedersen, Chem. Rev. 2015, 115, 3615-
3676.
Yield (%)
81
14
413 K, 4 h
H2O, -CH3OH, H2
HO
Ir-ReOx/SiO2 + ReOx-Pd/CeO2
H2O, CH3OH
OH
(2S)-1,2,5-pentanetriol
Total yield 93%
96% ee
393 K, 4 h
Scheme 2. Synthesis of chiral building blocks and α,ω-diol synthon. (A)
Formation of dideoxy ribofuranose, (2S)-1,2,5-pentanetriol and
tetrahydrofurfuryl alcohol from methyl β-D-ribofuranoside. (B) Formation of
(2R)-1,2,5-pentanetriol from methyl β-L-arabinopyranoside. (C) Formation of
(2S)-1,2,5-pentanetriol from D-ribose. See supplementary materials for
detailed procedures.
[14] L. L. Adduci, T. A. Bender, J. A. Dabrowski, M. R. Gagné, Nat. Chem.
2015, 7, 576-581.
[15] T. A. Bender, J. A. Dabrowski, M. R. Gagné, ACS Catal. 2016, 6, 8399–
8403.
[16] Y. Seo, M. R. Gagné, ACS Catal. 2018, 8, 81-85.
[17] X. Sun, H. Lee, S. Lee, K. L. Tan, Nat. Chem. 2013, 5, 790-795.
[18] Deoxydehydration of Polyols” in Selective Catalysis for Renewable
Feedstocks and Chemicals; C. Boucher-Jacobs, K. M. Nicholas, in
Selective Catalysis for Renewable Feedstocks and Chemicals; K. M.
Nicholas, Ed. Springer: 2014, pp 163-184.
81% + methyl α-D-2,3-dideoxy-ribofuranoside 14%). The
produced reaction mixture with water was heated, affording
(2S)-1,2,5-pentanetriol in 93% yield with 96% ee. This is first
example of one-pot transformation of sugars to chiral alcohols
in high yield and high ee without protection of OH groups
except the OH group of the hemiacetal group.
[19] S. Raju, M.-E. Moret, R. J. M. K. Gebbink, ACS Catal. 2015, 5, 281-300.
[20] J. R. Dethlefsen, P. Fristrup, ChemSusChem 2015, 8, 767-775.
[21] S. Tazawa, N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K.
Tomishige, ACS Catal. 2016, 6, 6393-6397.
In conclusion, we found that ReOx-Pd/CeO2 was an effective
heterogeneous catalyst for the direct and selective
transformation of methyl glycosides with cis-vicinal OH groups
to dideoxy glycosides without protection of OH groups except
the OH group of the hemiacetal group by deoxydehydration
and subsequential hydrogenation using gaseous H2 as a
reductant. The key for the selective transformation is
recognition of cis-vicinal OH groups in the methyl glycosides
by ReOx-Pd/CeO2 catalyst, leading to selective conversion of
the cis-vicinal OH groups to C=C bond by deoxydehydration.
Various methyl glycosides with cis-vicinal OH groups were
converted to the corresponding dideoxy glycosides in high
isolated yields (78-93%) with maintaining the intrinsic structure.
Furthermore, we demonstrated that the produced dideoxy
glycoside can be selectively transformed to the chiral polyols
in high yield and high ee by hydration and hydrogenation, and
both enantiomers of 1,2,5-pentanetriol can be individually
synthesized by changing the starting substrate of methyl
glycosides. Tetrahydrofurfuryl alcohol, a diol synthon of 1,5-
pentanediol, was also synthesized in high yield by hydration
and hydrogenation of the produced dideoxy sugar. One-pot
transformation of D-ribose to (2S)-1,2,5-pentanetriol was
[22] M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2012, 51, 8082-8086;
Angew. Chem. 2012, 124, 8206-8210.
[23] M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2013, 52, 12905-
12909; Angew. Chem. 2013, 125, 13143-13147.
[24] R. T. Larson, A. Samant, J. Chen, W. Lee, M. A. Bohn, D. M. Ohlmann,
S. J. Zuend, F. D. Toste J. Am. Chem. Soc. 2017, 139, 14001−1400.
[25] N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, Angew.
Chem. Int. Ed. 2015, 54, 1897-1900; Angew. Chem. 2015, 127, 1917-
1920.
[26] N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, ACS
Catal. 2016, 6, 3213-3226.
[27] S. Konstantinović, J. Predojević, S. Gojković, V. Pavlović, J. Vsanádi, J.
Serb. Chem. Soc. 2011, 66, 499-505.
[28] I. Tsukamoto, R. Konishi, Y. Kubota, K. Oosumi, M. Mizuno, JP-A-2012-
31108, 2012.
[29] J. C. Ramos, P. Bracco, M. Mazzini, J. R. Fernández, D. Gamenara, G.
A. Seoane, Tetrahedron: Asymmetry 2010, 21, 969-972.
[30] Md. E. Haque, T. Kikuchi, K. Kanemitsu, Y. Tsuda, Chem. Pharm. Bull.
1986, 34, 430-433.
[31] K. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige,
ChemCatChem 2010, 2, 547-555.
[32] K. Chen, K. Mori, H. Watanabe, Y. Nakagawa, K. Tomishige, J. Catal.
2012, 294, 171-183.
This article is protected by copyright. All rights reserved.