the successful synthesis of the targeted dendritic structures.
The synthesis method only requires a minimum number of
purification procedures and no protection/deprotection steps,
thus demonstrating the viability of nitrone radical chemistry in
organic synthesis.
C. B.-K. is grateful for continued support from the
Karlsruhe Institute of Technology (KIT) in the context of
the Excellence Initiative for leading German universities.
T.J. acknowledges funding from the Fonds Wetenschappelijk
Onderzoek (FWO). E.H.H.W. and O.A. are thankful for
postgraduate scholarships from UNSW and the Islamic
Development Bank (IDB), respectively. M.H.S. acknowledges
receipt of a Future Fellowship from the ARC.
Notes and references
1 (a) J. Hamer and A. Macaluso, Chem. Rev., 1964, 64,
473–495; (b) K. V. Gothelf and K. A. Jorgensen, Chem. Rev.,
1998, 98, 863–909.
2 L. Vretik and H. Ritter, Macromolecules, 2003, 36, 6340–6345.
3 M. Heinenberg and H. Ritter, Macromol. Chem. Phys., 1999, 200,
1792–1805.
4 E. G. Janzen, Acc. Chem. Res., 1971, 4, 31–40.
5 E. H. H. Wong, C. Boyer, M. H. Stenzel, C. Barner-Kowollik and
T. Junkers, Chem. Commun., 2010, 46, 1959–1961.
6 E. H. H. Wong, M. H. Stenzel, T. Junkers and C. Barner-
Kowollik, Macromolecules, 2010, 43, 3785–3793.
Fig. 2 1H-NMR spectra of the end group regions evidencing the
chemical transformations as the dendrimers increase in generations.
The dotted lines indicate where the protons in the a-position of the
azide group and the nitrone protons lie in their respective regions. The
full NMR spectra can be found in the ESI.w
7 E. H. H. Wong, T. Junkers and C. Barner-Kowollik, Polym.
Chem., 2011, 2, DOI: 10.1039/C0PY00377H.
8 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2001, 40, 2004–2021; (b) C. Barner-Kowollik, F. E. Du
Prez, P. Espeel, C. J. Hawker, T. Junkers, H. Schlaad and W. Van
Camp, Angew. Chem., Int. Ed., 2011, 50, 60–62.
9 W.-D. Jang, K. M. K. Selim, C.-H. Lee and I.-K. Kang, Prog.
Polym. Sci., 2009, 34, 1–23.
10 D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev., 2010, 110,
1857–1959.
11 P. Posocco, S. Pricl, S. Jones, A. Barnard and D. K. Smith, Chem.
Sci., 2010, 1, 393–404.
12 (a) G. Chen, J. Kumar, A. Gregory and M. H. Stenzel, Chem.
Commun., 2009, 6291–6293; (b) K. L. Killops, L. M. Campos and
C. J. Hawker, J. Am. Chem. Soc., 2008, 130, 5062–5064;
(c) P. Antoni, M. J. Robb, L. Campos, M. Montanez, A. Hult,
E. Malmstrom, M. Malkoch and C. J. Hawker, Macromolecules,
2010, 43, 6625–6631; (d) P. Antoni, D. Nystroem, C. J. Hawker,
A. Hult and M. Malkoch, Chem. Commun., 2007, 2249–2251.
13 E. H. H. Wong, T. Junkers and C. Barner-Kowollik, J. Polym.
Sci., Part A: Polym. Chem., 2008, 46, 7273–7279.
different aromatic protons may also mislead the reader to
think likewise. In spite of this, the products are in fact pure
and the chemical transformations of the dendrimers as they
progressively increase in generations were successfully monitored
by the disappearance/reappearance of the key protons
associated with the functional groups. In the synthesis of
G1-[N3]6, the nitrone proton at 7.63 ppm originating from
the trisnitrone core clearly disappeared and a new peak
(3.20–3.28 ppm) corresponding to the protons on the a
position of the azide groups occurred. The nitrone protons
reappeared as the azide end groups undergo CuAAC reactions
to yield G2-[Nit]12. Along with this nitrone-characteristic
proton, a new peak belonging to the proton of the triazole
ring was formed at 7.65 ppm. When subjecting the second
generation dendrimer to NMRC reactions, the nitrone protons
disappear again while the a-protons of the azides reoccur, thus
confirming the formation of G3-[N3]24.
14 E. H. H. Wong, M. H. Stenzel, T. Junkers and C. Barner-
Kowollik, J. Polym. Sci., Part A: Polym. Chem., 2009, 47,
1098–1107.
15 T. Junkers, E. H. H. Wong, M. H. Stenzel and C. Barner-
Kowollik, Macromolecules, 2009, 42, 5027–5035.
16 (a) D. Benoit, V. Chaplinski, R. Braslau and C. J. Hawker, J. Am.
Chem. Soc., 1999, 121, 3904–3920; (b) M.-O. Zink, A. Kramer and
NMRC is for the first time introduced as a facile synthetic
reaction for the preparation of multifunctional alkoxyamines
from nitrones and a suitable radical source. The efficiency of
this synthetic strategy is demonstrated on the formation of
dendrimers based on an AB/CD2 monomer approach employing
both the nitrone-mediated radical coupling reaction as well as
CuAAC ‘click’ chemistry. Both SEC and 1H-NMR confirm
P.
Nesvadba, Macromolecules,
2000, 33,
8106–8108;
(c) R. B. Grubbs, J. K. Wegrzyn and Q. Xia, Chem. Commun.,
2005, 80–82; (d) V. Sciannamea, R. Jerome and C. Detrembleur,
Chem. Rev., 2008, 108, 1104–1126.
17 R. Hoogenboom, Angew. Chem., Int. Ed., 2010, 49, 3415–3417.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5491–5493 5493