Journal of the American Chemical Society
Article
number 606728), and Spanish MICINN/MINECO through
the programs MAT2011-25046 are thanked for support.
CONCLUSIONS
■
By a combination of Sonogashira, Wittig, and phosphite-
mediated reactions, a large selection of cruciform-like OPE-
TTF molecules was prepared. Thioacetate electrode anchoring
groups were incorporated either as OPE end groups or as
peripheral substituents on DTF termini. CP-AFM measure-
ments on SAMs showed the conductance to increase with (1)
decreasing length of the molecule, (2) an increasing number of
orthogonally placed DTFs along the wire, and (3) by replacing
aryl units of the OPE by DTFs. In contrast, both STM-BJ and
MCBJ single-molecule measurements did not show any
significant change in conductance by having DTFs along the
OPE. Instead, the probability of trapping a molecule decreased
systematically with the number of orthogonally placed DTFs
within the OPE3 series (1, 3, 6); these probably offer
alternative binding sites, reducing the mobility of the molecules
for diffusing toward the junction. Despite this, the mean
junction separation at breakdown was virtually identical across
this series, indicating that within the junction the DTFs do not
cause significant instability. Notably, measurements on SAMs
provide significantly lower conductances than those on single
molecules. One reasonable explanation is the different
connecting geometries of the device. In the CP-AFM
measurements on SAMs, we most likely have a junction
structure corresponding to Au−S−OPE−SAc ||| Au, where the
top sulfur is not covalently linked to Au (indicated by |||
symbol), while the BJs in most cases likely correspond to Au−
S−OPE−S−Au (covalent anchoring to both electrodes). The
lack of a covalent top linkage may be responsible for the
different trends seen for the single-molecule and SAM studies
by altering the conductance pathway across the junction. The
different outcome not only brings to the forefront the challenge
of characterizing conducting properties of complex molecules
containing several sulfur atoms as potential binding sites but
also stresses the importance of the interface with regard to the
observed trends within series of molecules. It is very gratifying
that CP-AFM/SAM studies carried out in different laboratories
(Beijing/Au tip vs Copenhagen/Pt tip (previous work)) reveal
similar trends as do BJ studies carried out in different
laboratories (Madrid/STM-BJ vs Delft/MCBJ).
REFERENCES
■
(1) (a) Robertson, N.; McGowan, C. A. Chem. Soc. Rev. 2003, 32,
96−103. (b) Benniston, A. C. Chem. Soc. Rev. 2004, 33, 573−578.
(c) Nørgaard, K.; Bjørnholm, T. Chem. Commun. 2005, 1812−1823.
(d) Weibel, N.; Grunder, S.; Mayor, M. Org. Biomol. Chem. 2007, 5,
2343−2353. (e) Klajn, R.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc.
Rev. 2010, 39, 2203−2237.
(2) (a) Tour, J. M.; Rawlett, A. M.; Kozaki, M.; Yao, Y.; Jagessar, R.
C.; Dirk, S. M.; Price, D. W.; Reed, M. A.; Zhou, C.-W.; Chen, J.;
Wang, W.; Campbell, I. Chem.Eur. J. 2001, 7, 5118−5134.
(b) Mayor, M.; Weber, H. B.; Reichert, J.; Elbing, M.; von Hanisch,
̈
C.; Beckmann, D.; Fischer, M. Angew. Chem., Int. Ed. 2003, 42, 5834−
́
5838. (c) Huber, R.; Gonzalez, M. T.; Wu, S.; Langer, M.; Grunder, S.;
Horhoiu, V.; Mayor, M.; Bryce, M. R.; Wang, C.; Jichati, R.;
Schonenberger, C.; Calame, M. J. Am. Chem. Soc. 2008, 130, 1080−
̈
1084. (d) Vonlanthen, D.; Mishchenko, A.; Elbing, M.; Neuburger, M.;
Wandlowski, T.; Mayor, M. Angew. Chem., Int. Ed. 2009, 48, 8886−
8890. (e) Kaliginedi, V.; Moreno-García, P.; Valkenier, H.; Hong, W.;
́
García-Suarez, V. M.; Buiter, P.; Otten, J. L. H.; Hummelen, J. C.;
Lambert, C. J.; Wandlowski, T. J. Am. Chem. Soc. 2012, 134, 5262−
5275. (f) Frisenda, R.; Perrin, M. L.; Valkenier, H.; Hummelen, J. C.;
van der Zant, H. S. J. Phys. Status Solidi B 2013, 250, 2431−2436.
(3) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277−283.
(4) (a) Segura, J. L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40,
1372−1409. (b) Perepichka, D. F.; Bryce, M. R.; Pearson, C.; Petty,
M. C.; McInnes, E. J. L.; Zhao, J. P. Angew. Chem., Int. Ed. 2003, 42,
4636−4639. (c) Ho, G.; Heath, J. R.; Kondratenko, M.; Perepichka, D.
F.; Arseneault, K.; Pez
́
olet, M.; Bryce, M. R. Chem.Eur. J. 2005, 11,
2914−2922. (d) Leroy-Lhez, S.; Baffreau, J.; Perrin, L.; Levillain, E.;
Allain, M.; Blesa, M.-J.; Hudhomme, P. J. Org. Chem. 2005, 70, 6313−
6320.
(5) (a) Lou, Y.; Collier, P.; Jeppesen, J. O.; Nielsen, K. A.; Delonno,
E.; Ho, G.; Perkins, J.; Tseng, H.-R.; Yamamoto, T.; Stoddart, J. F.;
Heath, J. R. ChemPhysChem 2002, 3, 519−525. (b) Giacalone, F.;
́
Herranz, M.; Gruter, L.; Gonzalez, M. T.; Calame, M.; Schonenberger,
̈
̈
̂
C.; Arroyo, C. R.; Rubio-Bollinger, G.; Velez, M.; Agraït, N.; Martín,
N. Chem. Commun. 2007, 4854−4856. (c) Leary, E.; Higgins, S. J.; van
Zalinge, H.; Haiss, W.; Nichols, R. J.; Nygaard, S.; Jeppesen, J. O.;
Ulstrup, J. J. Am. Chem. Soc. 2008, 130, 12204−12205. (d) Liao, J.;
Agustsson, J. S.; Wu, S.; Schonenberger, C.; Calame, M.; Leroux, Y.;
̈
Mayor, M.; Jeannin, O.; Ran, Y.-F.; Liu, S.-X. Nano Lett. 2010, 10,
759−764.
(6) (a) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.;
Whitesides, G. M. Chem. Rev. 2005, 105, 1103−1169. (b) Stuhr-
Hansen, N.; Sørensen, J. K.; Moth-Poulsen, K.; Christensen, J. B.;
Bjørnholm, T.; Nielsen, M. B. Tetrahedron 2005, 61, 12288−12295.
(c) Nørgaard, K.; Nielsen, M. B.; Bjørnholm, T. In Functional Organic
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, characterization data, and NMR
spectra. This material is available free of charge via the Internet
Materials; Muller, T. J. J., Bunz, U. H. F., Eds.; Wiley-VCH: Weinheim,
̈
Germany, 2007; pp 353−392.
(7) (a) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105,
4481−4483. (b) Strong, L.; Whitesides, G. M. Langmuir 1988, 4, 546−
AUTHOR INFORMATION
■
Corresponding Authors
558. (c) Kubatkin, S.; Danilov, A.; Hjort, M.; Cornil, J.; Bred
́
as, J.-L.;
d, P.; Bjørnholm, T. Nature 2003, 425,
̊
Stuhr-Hansen, N.; Hedegar
698−701. (d) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.;
Whitesides, G. M. Chem. Rev. 2005, 105, 1103−1169. (e) Meisner, J.
S.; Ahn, S.; Aradhya, S. V.; Krikorian, M.; Parameswaran, R.;
Steigerwald, M.; Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc.
2012, 134, 20440−20445.
Notes
The authors declare no competing financial interest.
(8) (a) Sørensen, J. K.; Vestergaard, M.; Kadziola, A.; Kilsa, K.;
̊
Nielsen, M. B. Org. Lett. 2006, 8, 1173−1176. (b) Jennum, K.;
Vestergaard, M.; Pedersen, A. H.; Fock, J.; Jensen, J.; Santella, M.; Led,
ACKNOWLEDGMENTS
■
J. J.; Kilsa, K.; Bjørnholm, T.; Nielsen, M. B. Synthesis 2011, 539−548.
̊
The European Union seventh Framework Programme (FP7/
2007-2013) under the grant agreement no. 270369 (“ELFOS”),
University of Copenhagen, FOM, NWO/OCW, ERC
(advanced ERC grant), (Mols@Mols), “MOLESCO” (Project
(c) Wei, Z.; Li, T.; Jennum, K.; Santella, M.; Bovet, N.; Hu, W.;
Nielsen, M. B.; Bjørnholm, T.; Solomon, G. C.; Laursen, B. W.;
Nørgaard, K. Langmuir 2012, 28, 4016−4023. (d) Parker, C. R.; Wei,
Z.; Arroyo, C. R.; Jennum, K.; Li, T.; Santella, M.; Bovet, N.; Zhao, G.;
J
dx.doi.org/10.1021/ja509937k | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX