E. Morera, G. Ortar / Bioorg. Med. Chem. Lett. 10 (2000) 1815±1818
1817
H.; Fujiwara, M.; Yamamoto, Y. J. Org. Chem. 1998, 63,
7529. (m) Ritzen, A.; Frejd, T. J. Chem. Soc., Perkin Trans. 1
1998, 3419. (n) Lai, J. H.; Marsilje, T. H.; Choi, S.; Nair, S.
A.; Hangauer, D. G. J. Peptide Res. 1998, 51, 271. (o) Morera,
E.; Ortar, G. Synlett 1997, 1403. (p) Satoh, Y.; Gude, C.;
Chan, K.; Firooznia, F. Tetrahedron Lett. 1997, 38, 7645. (q)
Dunn, M. J.; Jackson, R. F. W. Tetrahedron 1997, 53, 13905.
(r) Kayser, B.; Altman, J.; Beck, W. Tetrahedron 1997, 53,
2475. (s) Crisp, G. T.; Gore, J. Tetrahedron 1997, 53, 1523. (t)
Walker, M. A.; Kaplita, K. P.; Chen, T.; King, H. D. Synlett
1997, 169. (u) Fretz, H. Tetrahedron Lett. 1996, 37, 8475. (v)
Rajagopalan, S.; Radke, G.; Evans, M.; Tomich, J. M. Synth.
Commun. 1996, 27, 1431. (w) Christensen, J. W.; Peterson, M.
L.; Saneii, H. H.; Healy, E. T. In Peptides: Chemistry, Struc-
ture and Biology; Kaumaya, P. T. P., Hodges, R. S., Eds.;
May¯ower Scienti®c: Kingswinford, UK, 1996; pp 141±143.
(x) Sengupta, S.; Bhattacharyya, S. Tetrahedron Lett. 1995, 36,
4475. (y) Lei, H.; Stoakes, M. S.; Herath, K. P. B.; Lee, J.;
Schwabacher, A. W. J. Org. Chem. 1994, 59, 4206. (z) Burk,
M. J.; Lee, J. R.; Martinez J. P. J. Am. Chem. Soc. 1994, 116,
10847. (aa) Franz, R. G.; Weinstock, J.; Calvo, R. R.; Sama-
nen, J.; Aiyar, N. Org. Prep. Proced. Int. 1994, 26, 533. (ab)
Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1992, 57, 379. (ac)
Hartman, G. D.; Halczenko, W. Synth. Commun. 1991, 21,
2103. (ad) Tilley, J. W.; Sarabu, R.; Wagner, R.; Mulkerins,
K. J. Org. Chem. 1990, 55, 906. (ae) Jackson, R. F. W.;
Wythes, M. J.; Wood, A. Tetrahedron Lett. 1989, 43, 5941.
(af ) Petrakis, K. S.; Nagabhushan, T. L. J. Am. Chem. Soc.
1987, 109, 2831.
(300 MHz, CDCl3) d 1.35 (9H, s, t-Bu), 3.07 (1H, m, CHH),
3.25 (1H, m, CHH), 4.54 (1H, m, a-CH), 5.35 (1H, m, NH),
7.29±7.75 (9H, m, ArH), 8.05 (1H, br s, CO2H); 13C NMR d
28.25, 37.97, 54.85, 80.19, 128.16, 129.29, 129.88, 130.23,
132.31, 136.01, 137.42, 141.62, 155.56, 175.89, 196.40. 2a (TFA
salt): wax; [a]2D0 5 ꢀ (c 0.2, MeOH:H2O=3:1 by volume) [lit.5
[a]2D0 5.5 ꢀ (c 0.2, MeOH:H2O=3:1 by volume)]; IR (KBr)
3171, 1640, 1606, 1586, 1524, 1380, 1315, 1282, 1256,
1
1174 cm
;
1H NMR (300 MHz, disodium salt, D2O) d 2.92
(1H, dd, J=13.9, 7.5 Hz, CHH), 3.08 (1H, dd, J=13.9, 5.2 Hz,
CHH), 3.56 (1H, m, a-CH), 6.62, 7.70 (4H, ABq, J=8.8 Hz,
ArH), 7.38, 7.60 (4H, ABq, J=8.2 Hz, ArH); 13C NMR d
43.54, 60.07, 121.75, 124.66, 131.86, 132.34, 137.46, 139.60,
145.29, 177.87, 184.86, 201.39.
15. Ishiyama, T.; Kizaki, H.; Hayashi, T.; Suzuki, A.;
Miyaura, N. J. Org. Chem. 1998, 63, 4726.
16. Carlstrom, A.-S.; Frejd, T. J. Org. Chem. 1990, 55, 4175
and references therein.
17. 6: mp 159±161 ꢀC; [a]D20+27 ꢀ (c 2.0, CHCl3); IR (CHCl3)
3431, 1738, 1711, 1650, 1608, 1500, 1279, 1178 cm 1; 1H NMR
(300 MHz, CDCl3) d 1.42 (9H, s, t-Bu), 3.20 (4H, m, bb0-CH2),
3.74 (3H, s, CO2Me), 4.20 (1H, t, J=6.8 Hz, FmocCH), 4.41
(1H, dd, J=10.5, 6.8 Hz, FmocCHH), 4.48 (1H, dd, J=10.5,
6.8 Hz, FmocCHH), 4.65 (1H, m, a-CH), 4.76 (1H, m, a0-CH),
5.05 (1H, d, J=8.4 Hz, NH), 5.13, 5.21 (2H, ABq, J=11.9 Hz,
CH2Ph), 5.34 (1H, d, J=8.1 Hz, N0H) 7.06±7.77 (21H, m,
ArH); 13C NMR d 28.29, 38.21, 38.44, 47.21, 52.38, 54.26,
54.62, 66.96, 67.52, 80.19, 120.04, 124.99, 127.10, 127.78,
128.71, 128.75, 129.32, 130.29, 134.87, 136.35, 140.59, 141.12,
141.37, 143.68, 143.78, 155.03, 155.51, 171.02, 172.01, 195.75.
18. Obtained in 78% overall yield from 4-iodo-l-phenylala-
nine by N-protection with Fmoc-ONSu/Na2CO3/DMF±H2O,
rt followed by esteri®cation with BnBr/NaHCO3/Bu4NCl/
8. Farina, V.; Krishnamurthy, V.; Scott, W. J. In Organic
Reactions; Wiley: New York, 1997; Vol. 50, pp 36±42.
9. C6H5SnBu3 is commercially available from Sigma-Aldrich.
10. Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1988,
110, 1557.
CH2Cl2/H2O, rt. 4: mp 157±160 ꢀC; [a]D20 4 ꢀ (c 2.0, CHCl3);
1
11. A mixture of 3a (405 mg, 1 mmol), C6H5SnBu3 (404 mg,
1.1 mmol), PdCl2 (9 mg, 0.05 mmol), and PPh3 (26 mg,
0.10 mmol) in dry DMF (4 mL) was purged with carbon
monoxide for 5 min and then stirred under a CO balloon at
90 ꢀC for 5 h. The reaction mixture was then diluted with
AcOEt (100 mL) and stirred at room temperature with a satu-
rated aqueous KF solution (1 mL) for 30 min. The precipitate
was removed by ®ltration and the organic phase was washed
three times with water, dried (Na2SO4), and evaporated. The
residue (548 mg) was chromatographed on silica gel (17 g)
using hexane:AcOEt=8:2 as eluent to give 336 mg (88%) of
3c: oil; [a]2D0+51 ꢀ (c 2.0, CHCl3); IR (CHCl3) 3435, 1741,
1710, 1656, 1499, 1367, 1279, 1165 cm 1; 1H NMR (300 MHz,
CDCl3) d 1.42 (9H, s, t-Bu), 3.12 (1H, dd, J=13.8, 6.6 Hz,
CHH), 3.24 (1H, dd, J=13.8, 5.4 Hz, CHH), 3.73 (3H, s,
CO2Me), 4.65 (1H, m, a-CH), 5.15 (1H, d, J=7.8 Hz, NH),
7.25±7.79 (9H, m, ArH); 13C NMR d 28.24, 38.33, 52.29,
54.20, 79.95, 128.15, 129.18, 129.82, 130.21, 132.24, 136.15,
137.49, 141.08, 154.89, 171.85, 196.08.
IR (CHCl3) 3428, 1719, 1509, 1342, 1183 cm
;
1H NMR
(300 MHz, CDCl3) d 3.03 (2H, m, b-CH2), 4.19 (1H, t,
J=6.9 Hz, FmocCH), 4.33±4.49 (2H, m, FmocCH2), 4.67 (1H,
m, a-CH), 5.08, 5.18 (2H, ABq, J=12.0 Hz, CH2Ph), 5.28
(1H, m, NH), 6.68, 7.76 (4H, ABq, J=7.3 Hz, 4-I-ArH), 7.24±
7.56 (13H, m, ArH); 13C NMR d 37.72, 47.17, 54.53, 66.92,
67.44, 92.63, 120.03, 124.99, 127.09, 127.76, 128.71, 128.74,
131.34, 134.84, 135.18, 137.59, 141.35, 143.65, 143.81, 155.48,
171.01.
19. Breslav, M.; Becker, J.; Naider, F. Tetrahedron Lett. 1997,
38, 2219.
20. 7a: (a) N-Boc-4-I-Phe-OH, H-Leu-OMe.HCl, i-BuOCOCl,
NMM, CH2Cl2, rt; (b) SOCl2, MeOH, 45 ꢀC; (c) Ac-Ala-OH,
TEA, HOBt, EDC, DMF, rt, 78% overall yield; mp 248±250 ꢀC;
[a]2D0 52ꢀ (c 0.5, CHCl3); IR (CHCl3) 3425, 1740, 1659, 1504,
1371, 1277cm 1; 1H NMR (300 MHz, CDCl3:CD3OD=3:1 by
volume) d 0.92 (6H, t, J=6.8 Hz, CH(CH3)2), 1.26 (3H, d,
J=7.2 Hz, CHCH3), 1.60 (3H, m, CH2CH(CH3)2), 1.95 (3H, s,
CH3CONH), 2.91 (1H, dd, J=13.8, 7.9Hz, CHHAr), 3.10 (1H,
dd, J=13.8, 6.0 Hz, CHHAr), 3.71 (3H, s, CO2Me), 4.31 (1H,
m, a-CH Ala), 4.48 (1H, m, a-CH Leu), 4.59 (1H, m, a-CH 4-
I-Phe), 6.98, 7.59 (4H, ABq, J=8.2 Hz, ArH); 13C NMR d
17.57, 21.66, 22.49, 22.86, 24.95, 37.30, 40.80, 51.11, 52.43,
54.08, 92.20, 131.61, 136.47, 137.54, 164.42, 171.16, 171.55,
173.30. 7b: (a) N-Fmoc-4-I-Phe-OH, H-Leu-OtBu.HCl, i-Bu-
OCOCl, NMM, CH2Cl2, rt; (b) piperidine, DMF, rt; (c) N-Fmoc-
Ala-OH, i-BuOCOCl, NMM, CH2Cl2, rt, 75% overall
12. Obtained in 74% overall yield from 4-iodophenol by
sequential O-derivatization ((Boc)2O/pyridine/THF, rt) and
stannylation according to Azizian, H.; Eaborn, C.; Pidcock,
A. J. Organomet. Chem. 1981, 215, 49.
13. 3d: oil; [a]2D0+36 ꢀ (c 2.0, CHCl3); IR (CHCl3) 3438, 1754,
1
1710, 1657, 1601, 1501, 1370, 1274, 1147 cm
;
1H NMR
(300 MHz, CDCl3) d 1.42 (9H, s, BocNH), 1.58 (9H, s, BocO),
3.12 (1H, dd, J=13.5, 6.1 Hz, CHH), 3.23 (1H, dd, J=13.5,
5.7 Hz, CHH), 3.74 (3H, s, CO2Me), 4.64 (1H, m, a-CH), 5.07
(1H, d, J=8.1 Hz, NH), 7.24±7.84 (8H, m, ArH); 13C NMR d
27.65, 28.25, 38.36, 52.32, 54.18, 80.03, 84.10, 121.01, 129.24,
130.14, 131.42, 134.83, 136.08, 141.11, 151.06, 154.04, 154.87,
171.81, 194.90.
yield; mp 170±172 ꢀC; [a]D20 22ꢀ (c 1.0, CHCl3); IR (CHCl3)
1
3421, 1722, 1666, 1520, 1501, 1369, 1151 cm
;
1H NMR
(300 MHz, CDCl3) d 0.87 (6H, br s, CH(CH3)2), 1.32 (3H, d,
J=6.9 Hz, CHCH3), 1.44 (9H, s, t-Bu), 1.52 (3H, m,
CH2CH(CH3)2), 2.97 (1H, dd, J=13.8, 6.3 Hz, CHHAr), 3.05
(1H, dd, J=13.8, 6.5 Hz, CHHAr), 4.22 (2H, m, a-CH Ala
and FmocCH), 4.40 (3H, m, a-CH Leu and FmocCH2), 4.68
(1H, m, a-CH 4-I-Phe), 5.42 (1H, d, J=5.7 Hz, FmocNH),
14. 1c: mp 85±88 ꢀC; [a]D20+18.5 ꢀ (c 2.0, EtOH) [lit.2 mp 91±
92 ꢀC; [a]D20+18.5 ꢀ (c 1.03, EtOH)]; IR (CHCl3) 3435, 3281,
1703, 1657, 1607, 1497, 1367, 1279, 1164 cm
1
;
1H NMR