Journal of the American Chemical Society
COMMUNICATION
’ REFERENCES
(1) Zhu, M. Q.; Zhu, L.; Han, J. J.; Wu, W.; Hurst, J. K.; Li, A. D.
J. Am. Chem. Soc. 2006, 128, 4303–4309.
(2) Yoo, J. W.; Mitragotri, S. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 11205–11210.
(3) Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.;
Lieber, C. M. Science 2000, 289, 94–97.
(4) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier,
C. P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433–444.
(5) Gras, S. L.; Mahmud, T.; Rosengarten, G.; Mitchell, A.;
Kalantar-Zadeh, K. ChemPhysChem 2007, 8, 2036–2050.
(6) Lahann, J.; Mitragotri, S.; Tran, T. N.; Kaido, H.; Sundaram,
J.; Choi, I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. Science 2003,
299, 371–374.
(7) King, W. J.; Pytel, N. J.; Ng, K.; Murphy, W. L. Macromol. Biosci.
2010, 10, 580–584.
(8) Liu, D.; Xie, Y.; Shao, H.; Jiang, X. Angew. Chem. Int. Ed. 2009,
48, 4406–4408.
(9) Reddy, T. T.; Kano, A.; Maruyama, A.; Hadano, M.; Takahara, A.
Biomacromolecules 2008, 9, 1313–1321.
(10) Wu, Y. I.; Frey, D.; Lungu, O. I.; Jaehrig, A.; Schlichting, I.;
Kuhlman, B.; Hahn, K. M. Nature 2009, 461, 104–108.
(11) Saha, S.; Flood, A. H.; Stoddart, J. F.; Impellizzeri, S.; Silvi, S.;
Venturi, M.; Credi, A. J. Am. Chem. Soc. 2007, 129, 12159–12171.
(12) Luo, W.; Westcott, N. P.; Pulsipher, A.; Yousaf, M. N. Langmuir
2008, 24, 13096–13101.
(13) Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 5992–5996.
(14) Westcott, N. P.; Pulsipher, A.; Lamb, B. M.; Yousaf, M. N.
Langmuir 2008, 24, 9237–9240.
Figure 4. Dynamic hide-and-reveal ligand strategy for controlling
substrate adhesiveness for biospecific cell attachment. (A) A cyclized
RGDS peptide containing a blocking sequence does not permit cell
adhesion (left). Reductive cleavage of the oxime bond reveals the
adhesive RGDS peptide for cell adhesion (right). (B) Cell adhesion
profiles on surfaces presenting hidden and revealed peptides. Cells were
able to differentiate between hidden and revealed RGDS peptides more
effectively at lower surface density.
(15) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides,
G. M. Chem. Rev. 2005, 105, 1103–1169.
(16) Whitesides, G. M.; Kriebel, J. K.; Love, J. C. Sci. Prog. 2005,
88, 17–48.
(17) Ulman, A. Chem. Rev. 1996, 96, 1533–1554.
(18) Chan, E. W.; Yousaf, M. N. J. Am. Chem. Soc. 2006,
128, 15542–15546.
molecule to a surface through an electroactive oxime linkage and
a Huisgen cycloaddition reaction. By application of a mild,
noninvasive electrochemical potential, we show that a surface
presenting cell-adhesive RGD peptides can change their affinity
(from linear to cyclic RGD) for cell integrin receptors, which
modulates cell spreading and cell migration behavior. We further
show how this method can be used to make materials adhesive
and nonadhesive to cells by a hide-and-reveal ligand approach.
The methodology is efficient and may be applicable to eliciting
molecular transformations for a wide range of biological small
molecules. Furthermore, it may be useful for physical/mechan-
ical studies that require switchable surfaces. By synthesizing
bifunctional molecules, a variety of dynamic ECM mimics may
be possible for stimulating diverse cell functions, especially tissue
remodeling to direct organism development.32 Future experiments
will apply this strategy to nanoparticles for the redox-state-depen-
dent delivery and release of therapeutics and imaging probes in vitro
and in vivo.
(19) Chan, E. W.; Park, S.; Yousaf, M. N. Angew. Chem. Int. Ed. 2008,
47, 6267–6271.
(20) Patai, S., Rappoport, Z., Eds. The Chemistry of the Quinonoid
Compounds; John Wiley & Sons: New York, 1988; Vol. 2, p 1711.
(21) Hudalla, G. A.; Murphy, W. L. Langmuir 2009, 25, 5737–5746.
(22) Park, S.; Yousaf, M. N. Langmuir 2008, 24, 6201–6207.
(23) Lamb, B. M.; Park, S.; Yousaf, M. N. Langmuir 2010,
26, 12817–12823.
(24) Galibert, M.; Dumy, P.; Boturyn, D. Angew. Chem. Int. Ed. 2009,
48, 2576–2579.
(25) Ghosh, S.; Defrancq, E.; Lhomme, J. H.; Dumy, P.; Bhattacharya,
S. Bioconjugate Chem. 2004, 15, 520–529.
(26) Karskela, M.; Helkearo, M.; Virta, P.; Lonnberg, H. Bioconjugate
Chem. 2010, 21, 748–755.
(27) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed.
2001, 40, 2004–2021.
’ ASSOCIATED CONTENT
(28) Collman, J. P.; Devaraj, N. K.; Eberspacher, T. P.; Chidsey, C. E.
Langmuir 2006, 22, 2457–2464.
(29) Samanen, J.; Ali, F.; Romoff, T.; Calvo, R.; Sorenson, E.; Vasko,
J.; Storer, B.; Berry, D.; Bennett, D.; Strohsacker, M. J. Med. Chem. 1991,
34, 3114–3125.
S
Supporting Information. Synthesis of 9 and spectra. This
b
acs.org.
(30) Pfaff, M.; Tangemann, K.; Muller, B.; Gurrath, M.; Muller, G.;
Kessler, H.; Timpl, R.; Engel, J. J. Biol. Chem. 1994, 269, 20233–20238.
(31) Hoover, D. K.; Chan, E. W.; Yousaf, M. N. J. Am. Chem. Soc.
2008, 130, 3280–3281.
(32) Xu, R.; Boudreau, A.; Bissel, M. J. Cancer Metastasis Rev. 2009,
28, 167–176.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank the Carolina Center for Cancer Nanotechnology
Excellence (National Cancer Institute), the NSF (CAREER
award), and the Burroughs Wellcome Foundation for funding.
8873
dx.doi.org/10.1021/ja203198y |J. Am. Chem. Soc. 2011, 133, 8870–8873