Journal of the American Chemical Society
ARTICLE
(2) (a) Collings, P. J.; Hird, M. Introduction to Liquid Crystals; Taylor
& Francis: London, 1997. (b) Demus, D.; Goodby, J.; Gray, G. W.;
Spiess, H.-W.; Vill, V. Handbook of Liquid Crystals; Wiley-VCH:
Weinheim, Germany, 1998, Vol. 1ꢀ3. (c) Pauluth, D.; Tarumi, K.
J. Mater. Chem. 2004, 14, 1219–1227.
(3) (a) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed.
2006, 45, 38–68. (b) Saez, I. M.; Goodby, J. W. J. Mater. Chem. 2005,
15, 26–40. (c) Ungar, G.; Zeng, X. Soft Matter. 2005, 1, 95–106.
(d) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; H€agele, C.;
Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M.
Angew. Chem., Int. Ed. 2007, 46, 4832–4887. (e) Lee, M.; Cho, B.-K.; Zin,
W.-C. Chem. Rev. 2001, 101, 3869–3892.
(4) (a) Ringsdorf, H.; Schlarb, B.; Venzmer, J. Angew. Chem., Int. Ed.
1988, 27, 113–158. (b) Greig, L. M.; Philp, D. Chem. Soc. Rev. 2001,
30, 287–302. (c) Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 4763–4768. (d) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.;
Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491–1546. (e) Keizer,
H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226–234.
(5) Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam,
M. R.; Percec, V. Chem. Rev. 2009, 109, 6275–6540.
(6) (a)Donnio, B.; Guillon, D. Adv. Polym. Sci. 2006, 201, 45–155. (b)
Lenoble, J.; Campidelli, S.; Maringa, N.; Donnio, B.; Guillon, D.;
Yevlampieva, N.; Deschenaux, R. J. Am. Chem. Soc. 2007, 129, 9941–9952.
(7) (a) Baranoff, E. D.; Voignier, J.; Yasuda, T.; Heitz, V.; Sauvage,
J.-P.; Kato, T. Angew. Chem., Int. Ed. 2007, 46, 4680–4683. (b)
AprahamianI.; Yasuda, T.; Ikeda, T.; Saha, S.; Dichtel, W. R.; Isoda,
K.; Kato, T.; Stoddart, J. F. Angew. Chem., Int. Ed. 2007, 46, 4675–
4679.
(8) Kitzerow, H.-S.; Bahr, C. Chirality in Liquid Crystals; Springer:
New York, 2001; Pansu, B. Mod. Phys. Lett. B 1999, 13, 769–782.
(9) (a) Reddy, R. A.; Tschierske, C. J. Mater. Chem. 2006,
16, 907–961. (b) Takezoe, H.; Takanishi, Y. Jpn. J. Appl. Phys. 2006,
45, 597–625.
(10) (a) Ikuma, N.; Tamura, R.; Shimono, S.; Kawame, N.; Tamada,
O.; Sakai, N.; Yamauchi, J.; Yamamoto, Y. Angew. Chem., Int. Ed. 2004,
43, 3767–3682. (b) Zienkiewicz, J.; Fryszkowska, A.; Zienkiewicz, K.;
Guo, F.; Kaszynski, P.; Januszko, A.; Jones, D. J. Org. Chem. 2007,
72, 3510–3520. (c) Terazzi, E.; Bourgogne, C.; Welter, R.; Gallani, J.-L.;
Guillon, D.; Rogez, G.; Donnio, B. Angew. Chem., Int. Ed. 2008, 47,
490–495.
(19) (a) Prehm, M.; Liu, F.; Zeng, X.-B.; Ungar, G.; Tschierske, C.
Angew. Chem., Int. Ed. 2007, 46, 7972–7975. (b) Prehm, M.; Enders, C.;
Anzahaee, M. Y.; Glettner, B.; Baumeister, U.; Tschierske, C. Chem.—Eur.
J. 2008, 14, 6352–6368. (c) Kieffer, R.; Prehm, M.; Pelz, K.; Baumeister,
U.; Liu, F.;Hahn, H.; Lang, H.; Ungar, G.; Tschierske, C. SoftMatter2009,
5, 1214–1227.
(20) (a) Cheng, X. H.; Das, M. K.; Diele, S.; Tschierske, C. Angew.
Chem., Int. Ed. 2002, 41, 4031–4035. (b) Prehm, M.; Cheng, X. H.;
Diele, S.; Das, M. K.; Tschierske, C. J. Am. Chem. Soc. 2002,
124, 12072–12073. (c) Prehm, M.; Diele, S.; Das, M. K.; Tschierske,
C. J. Am. Chem. Soc. 2003, 125, 614–615. (d) Patel, N. M.; Dodge, M. R.;
Zhu, M. H.; Petschek, R. G.; Rosenblatt, C.; Prehm, M.; Tschierske, C.
Phys. Rev. Lett. 2004, 92, 015501. (e) Patel, N. M.; Syed, I. M.;
Rosenblatt, C.; Prehm, M.; Tschierske, C. Liq. Cryst. 2005, 32, 55–61.
(21) See, for example, compound D in: Kieffer, R.; Prehm, M.;
Glettner, B.; Pelz, K.; Baumeister, U.; Liu, F.; Zeng, X.-B.; Ungar, G.;
Tschierske, C. Chem. Commun. 2008, 3861–3863.
(22) Cheng, X. H.; Dong, X.; Huang, R.; Zeng, X.-B.; Ungar, G.;
Prehm, M.; Tschierske, C. Chem. Mater. 2008, 20, 4729–4738.
(23) Cheng, X. H.; Dong, X.; Wei, G.; Prehm, M.; Tschierske, C.
Angew. Chem., Int. Ed. 2009, 48, 8014–8017.
(24) Prehm, M.; G€otz, G.; B€auerle, P.; Liu, F.; Ungar, G.; Tschierske,
C. Angew. Chem., Int. Ed. 2007, 46, 7856–7859.
(25) A monotropic phase assigned as Colsqu/p4mm in ref 13
(compound F4-1/1) turned out to be actually a 3D-hexagonal phase:
Liu. F.; Zeng, X.; Ungar, G.; Tschierske, C. unpublished results.
(26) (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981,
11, 513–519. (b) Hird, M.; Gray, G. W.; Toyne, K. J. Mol. Cryst. Liq.
Cryst. 1991, 206, 187–204. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995,
95, 2457–2483.
(27) Chen, Q.-Y.; Yang, Z. Y.; Zhao, C.-X.; Qiu, Z. M. J. Chem. Soc.,
Perkin Trans. 1 1988, 563–567.
(28) Majetch, G.; Hicks, R.; Reister, S. J. Org. Chem. 1997, 62,
4321–4326.
(29) Yamoto, Y.; Hatsuya, S.; Yamada, J. J. Org. Chem. 1990, 55,
3118–3128.
(30) Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Am. Chem.
Soc. 1984, 106, 3252–3257.
(31) Van Rheenen, V.; Cha, D. Y.; Hartley, W. M. Org. Synth. 1979,
58, 43–51.
(32) K€olbel, M.; Beyersdorff, T.; Tschierske, C.; Diele, S.; Kain, J.
Chem.—Eur. J. 2000, 6, 3821–3837.
(11) Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs,
J. K. Nature 2004, 428, 157–160.
(12) K€olbel, M.; Beyersdorff, T.; Cheng, X. H.; Tschierske, C.; Kain,
J.; Diele, S. J. Am. Chem. Soc. 2001, 123, 6809–6818.
(33) Immirzi, A.; Perini, B. Acta Crystallogr., Sect. A. 1977, 33,
216–218.
(13) Cheng, X. H.; Prehm, M.; Das, M. K.; Kain, J.; Baumeister, U.;
Diele, S.; Leine, D.; Blume, A.; Tschierske, C. J. Am. Chem. Soc. 2003,
125, 10977–10996.
(14) (a) Tschierske, C. J. Mater. Chem. 1998, 8, 1485–1508. (b)
Tschierske, C. J. Mater. Chem. 2001, 11, 2647–2671. (c) Tschierske, C.
Ann. Rep. Progr. Chem. Ser. C. 2001, 97, 168–191. (d) Tschierske, C.
Curr. Opin. Colloid Interface Sci. 2002, 7, 69–80.
(15) Tschierske, C. Chem. Soc. Rev. 2007, 36, 1930–1970.
(16) Glettner, B.; Liu, F.; Zeng, X.; Prehm, M.; Baumeister, U.;
Bates, M. A.; Walker, M.; Boesecke, P.; Ungar, G.; Tschierske, C. Angew.
Chem., Int. Ed. 2008, 47, 9063–9066.
(17) (a) Cheng, X. H.; Das, M. K.; Baumeister, U.; Diele, S.;
Tschierske, C. J. Am. Chem. Soc. 2004, 126, 12930–12940. (b) Prehm,
M.; Liu, F.; Baumeister, U.; Zeng, X. ꢀB; Ungar, G.; Tschierske, C.
Angew. Chem., Int. Ed. 2007, 46, 7972–7975.
(18) (a) Chen, B.; Baumeister, U.; Diele, S.; Das, M. K.; Zeng, X.-B.;
Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2004, 126, 8608–8609. (b)
Chen, B.; Zeng, X.-B.; Baumeister, U.; Diele, S.; Ungar, G.; Tschierske,
C. Angew. Chem., Int. Ed. 2004, 43, 4621–4625. (c) Chen, B.; Zeng,
X.-B.; Baumeister, U.; Ungar, G.; Tschierske, C. Science 2005,
307, 96–99. (d) Chen, B.; Baumeister, U.; Pelzl, G.; Das, M. K.; Zeng,
X.-B.; Diele, S.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005,
127, 16578–16591. (e) Liu, F.; Chen, B.; Baumeister, U.; Zeng, X.;
Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2007, 129, 9578–9579.
(34) That the biphenyl cores are oriented perpendicular to the
column axis is shown by the color of the fans in the optical micrographs
(Figures 3c,d, and 4b, Figures S4d, S6d, S7g in SI) taken with a λ-plate.
The yellow and blue colors define the orientation of the high-index axis
as radial rather than tangential. Since the columns are tangential in the
fans, and the high-index axis is known to be parallel to the biphenyl long
axis, it follows that the biphenyls are perpendicular to the columns;
(n < n^ = optically negative).
(35) The value h = 0.45 nm was used in all calculations, independent
of the actual position of the maximum of the wide angle scattering in the
diffraction pattern. The reason is that the bolaamphiphilic units (their
average diameter is 0.45 nm) are responsible for the lattice of the cylinder
shells, whereas the semiperfluoralkyl chains only fill the channels within
this structure. Because the cross section of the perfluorinated segments is
larger than the rest of the molecules, there is a drift of the maximum of
the diffuse scattering in the X-ray diffraction pattern to larger d-values
with increasing degree of fluorination. However, this shift is due to a
change of a molecular parameter rather than due to a change of the
structure. Because the diameter of the fluorinated segments is larger than
that of the nonfluorinated bolaamphiphilic moieties, which form the
cylinder walls, there is a mixing of the chains of adjacent (hypothetical)
unit cells along the cylinders, i.e. the perfluorinated chains in one
(hypothetical) unit cell also contribute to the space filling in the adjacent
unit cell.
7880
dx.doi.org/10.1021/ja200822z |J. Am. Chem. Soc. 2011, 133, 7872–7881