Page 7 of 9
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
(3) functional group compatibility including acid labile acetals
and silyl ethers; (4) a reasonable waste-balance (E-factor down
to 3) and (5) operational simplicity, since non-dry reaction
conditions are viable. Remarkably, the formation of peptidic C-
N bonds is possible, when phthaloyl protected amino acids are
employed.
In comparison to ordinary protocols using TCT, not only the
yields of amidations are significantly improved (e.g. 91% instead
of 26%), but also esterifications are enabled in synthetically
useful yields for the first time. The significant advancements are
explained by the formation of carboxylic acid chlorides as
intermediates instead of less electrophilic anhydrides. Finally,
high levels of applicability were testified by the preparation of
the pharmaceuticals Moclobemide and Modafinil and the
insecticide DEET. Under consideration of the manifold
enhancements a rapid application of the current method in
academic and industrial laboratories is to be expected.
(d) P. Anastas and N. Eghbali, Chem. SDocO.I:R1e0v.1.02309/1C09,S3C90,2132061D;
(e) R. A. Sheldon, Chem. Soc. Rev., 2012, 41, 1437; (f) P. J.
Dunn, Chem. Soc. Rev., 2012, 41, 1452; (g) R. A. Sheldon,
Green Chem. 2017, 19, 18.
4
5
Reviews on boron Lewis acid catalysis: (a) H. Charville, D.
Jackson, G. Hodgesc, A. Whiting, Chem. Commun., 2010, 46,
1813; (b) H. Zheng and D. G. Hall, Aldrichim. Acta, 2014, 47,
41; (c) P. Huy and B. Zoller, Nachr. Chem. 2019, 67, 51.
Seminal Publications: (a) K. Ishihara, S. Ohara and H.
Yamamoto, J. Org. Chem., 1996, 61, 4196; (b) K. Arnold, B.
Davies, R. L. Giles, C. Grosjean, G. E. Smith, A. Whiting, Adv.
Synth. Catal., 2006, 348, 813; (c) R. M. Al-Zoubi, O. Marion and
D. G. Hall, Angew. Chem. Int. Ed., 2008, 47, 2876; (d) N.
Gernigon, R. M. Al-Zoubi and D. G. Hall, J. Org. Chem., 2012,
77, 8386; (e) M. T. Sabatini, L. T. Boulton and T. D. Sheppard,
Sci. Adv., 2017, 3, e1701028; (f) S. Arkhipenko, M. T. Sabatini,
A. S. Batsanov, V. Karaluka, T. D. Sheppard, H. S. Rzepa and A.
Whiting, Chem. Sci., 2018, 9, 1058.
(a) H. Noda, M. Furutachi, Y. Asada, M. Shibasaki and N.
Kumagai, Nature Chem., 2017, 9, 471; (b) Z. Liu, H. Noda, M.
Shibasaki and N. Kumagai, Org. Lett., 2018, 20, 612; (c) H.
Noda, Y. Asada, M. Shibasaki and N. Kumagai, J. Am. Chem.
Soc. 2019, 141, 1546; (d) C. R. Opie, H. Noda, M. Shibasaki,
and N. Kumagai, Chem. Eur. J., 2019, 25, 4648.
6
Conflicts of interest
There are no conflicts to declare.
7
8
9
For other leading boron Lewis acid catalyzed methods for the
synthesis of challenging amides see: (a) K. Ishihara and Y. Lu,
Chem. Sci., 2016, 7, 1276; (b) K. Wang, Y. Lu and K. Ishihara,
Chem. Commun., 2018, 54, 5410; (c) D. N. Sawant, D. B. Bagal,
S. Ogawa, K. Selvam and S. Saito, Org. Lett., 2018, 20, 4397.
For example see: (a) H. Lundberg, F. Tinnis, H. Adolfsson,
Chem. Eur. J. 2012, 18, 3822; (b) H. Lundberg, H. Adolfsson,
ACS Catal. 2015, 5, 3271, (c) H. Lundberg, F. Tinnis, J. Zhang,
A. G. Algarra, F. Himo, H. Adolfsson, J. Am. Chem. Soc. 2017,
139, 2286.
A round-table of representatives of several pharmaceuticals
companies repeatedly requested more efficient methods for
amidations as primary target: (a) D. J. C. Constable, P. J. Dunn,
J. D. Hayler, G. R. Humphrey, J. L. Leazer, Jr., R. J. Linderman,
K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaksh and T.
Y. Zhang, Green Chem., 2007, 9, 411; (b) M. C. Bryan, P. J.
Dunn, D. Entwistle, F. Gallou, S. G. Koenig, J. D. Hayler, M. R.
Hickey, S. Hughes, M. E. Kopach, G. Moine, P. Richardson, F.
Roschangar, A. Steven and F. J. Weibert, Green Chem., 2018,
20, 5082.
Acknowledgements
We want to thank the German research foundation (DFG) and
the Fonds of the Chemical Industry (Liebig fellowship for P. H.)
for generous support. In addition, we would like to thank Rudolf
Thomes and Dr. Klaus Hollemeyer for measuring HR-MS and Dr.
Josef Zapp for the measurement of high temperature NMR
spectra.
Notes and references
1
Reviews on amidations: (a) T. Ziegler in Science of Synthesis,
Vol. 21 (Ed. S. M. Weinreb), Georg Thieme: Stuttgart, 2005,
pp. 43-77; (b) E. Haslam, Tetrahedron, 1980, 36, 2409; (c) C.
A. G. N. Montalbetti and V. Falque Tetrahedron, 2005, 61,
10827; (d) E. Valeur and Mark Bradley, Chem. Soc. Rev., 2009,
38, 606; (e) K. Ishihara, Tetrahedron, 2009, 65, 1085; (f) A. El-
Faham and F. Albericio, Chem. Rev. 2011, 111, 6557; (g) V. R.
Pattabiraman and J. W. Bode, Nature, 2011, 480, 471; (h) R.
M. Lanigan and T. D. Sheppard, Eur. J. Org. Chem. 2013, 7453;
(i) H. Lundberg, F. Tinnis, N. Selander and H. Adolfsson, Chem.
Soc. Rev., 2014, 43, 2714; (j) R. M. de Figueiredo, J.-S. Suppo
and J. M. Campagne, Chem. Rev., 2016, 116, 12029; (k) A.
Ojeda-Porras and D. Gamba-Sanchez, J. Org. Chem., 2016, 81,
11548; (l) J. R. Dunetz, J. Magano and G. A. Weisenburger,
Org. Process Res. Dev., 2016, 20, 140; (m) M.T. Sabatini, L. T.
Boulton, H. F. Sneddon and T. D. Sheppard, Nature Catal.,
2019, 2, 10.
10 For the cost assessment for each reagent the lowest price at
Sigma-Aldrich was selected. We are fully aware that the costs
would drop significantly on an industrial scale. Nevertheless,
we are convinced that current study allows for a relative
ranking with respect to cost-efficiency. For more details, see
chapter 1.2 in the ESI.
11 Reviews on TCT: (a) S. S. Voyutskii, V. L. Vakula, Russ. Chem.
Rev. 1964, 92-103; (b) N. Kriebitzsch and H. Klenk in Ullmann´s
Encyclopedia of Industrial Chemistry, vol. A8 (Eds. W. Gerhartz
et al.), VCH, Weinheim, 1987, pp. 191-200; (c) Z. J. Kaminsky,
Biopolymers, 2000, 55, 140; (d) G. Blotny, Tetrahedron, 2006,
62, 9507.
12 At Sigma-Aldrich phosgene is only available as a relatively
costly solution and is therefore not included in Figure 1. As
carbonyl dichloride is readily prepared from CO and Cl2, the
real costs are likely to be significantly lower.
2
3
Reviews about esterifications: (a) E. Haslam, Tetrahedron,
1980, 36, 2409; (b) R. C. Larock, Comprehensive Organic
Transformations, John Wiley & Sons, New York, 2nd edn,
1999, p. 1932; (c) A. C. Spivey and S. Arseniyadis Angew.
Chem. Int. Ed., 2004, 43, 5436; (d) R. Shelkov, M. Nahmany
and A. Melman, Org. Biomol. Chem., 2004, 2, 397; (e) N. F. Jain
and C. E. Masse in Science of Synthesis, Vol. 20b (Ed. J. S.
Panek), Georg Thieme: Stuttgart, 2006, pp. 711-715.
13 (a) A. Devos, J. Remion, A. M. Frisque-Hesbain, A. Colens, and
L. Ghosez, J. Chem. Soc., Chem. Commun., 1979, 1180; (b) B.
Haveaux, A. Dekoker, M. Rens, A. R. Sidani, J. Toye, L. Ghosez,
M. Murakami, M. Yoshioka and W. Nagata, Org. Synth., 1979,
59, 26.
Selected reviews regarding sustainability: (a) R. A. Sheldon,
Green Chem., 2007, 9, 1273; (b) C. J. Li and B. M. Trost, Proc.
Natl. Acad. Sci. U.S.A., 2008, 105, 13197; (c) T. Newhouse, P.
14 (a) H. Wissmann and H.-J. Kleiner, Angew. Chem., Int. Ed.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins