C.-K. Pei, X.-C. Zhang, M. Shi
FULL PAPER
Y.-Q. Wang, L. Deng, Org. Lett. 2006, 8, 4063–4065; h) B.
Wang, F. Wu, Y. Wang, X. Liu, L. Deng, J. Am. Chem. Soc.
2007, 129, 768–769; i) H. Li, B. Wang, L. Deng, J. Am. Chem.
Soc. 2006, 128, 732–733; j) L. Tang, L. Deng, J. Am. Chem.
Soc. 2002, 124, 2870–2871; k) R. P. Singh, B. M. Foxman, L.
Deng, J. Am. Chem. Soc. 2010, 132, 9558–9560; l) S. Saaby, M.
Bella, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 8120–
8121; m) M. Bella, K. A. Jørgensen, J. Am. Chem. Soc. 2004,
126, 5672–5673.
2004, 116, 6857–6859; Angew. Chem. Int. Ed. 2004, 43, 6689–
6691; d) H. Park, C.-W. Cho, M. J. Krische, J. Org. Chem. 2006,
71, 7892–7894; e) S. Kobbelgaard, S. Brandes, K. A. Jørgensen,
Chem. Eur. J. 2008, 14, 1464–1471.
a) Y.-S. Du, X.-L. Han, X.-Y. Lu, Tetrahedron Lett. 2004, 45,
4967–4971; b) D. J. V. C. van Steenis, T. Marcelli, M. Lutz,
A. L. Spek, J. H. van Maarseveen, H. Hiemstra, Adv. Synth.
Catal. 2007, 349, 281–286.
a) K. Jiang, J. Peng, H.-L. Cui, Y.-C. Chen, Chem. Commun.
2009, 45, 3955–3957; b) H.-L. Cui, J. Peng, X. Feng, W. Du,
K. Jiang, Y.-C. Chen, Chem. Eur. J. 2009, 15, 1574–1577; c)
H.-L. Cui, J.-R. Huang, J. Lei, Z.-F. Wang, S. Chen, L. Wu,
Y.-C. Chen, Org. Lett. 2010, 12, 720–723; d) J. Peng, X. Huang,
H.-L. Cui, Y.-C. Chen, Org. Lett. 2010, 12, 4260–4263; e) S.-J.
Zhang, H.-L. Cui, K. Jiang, R. Li, Z.-Y. Ding, Y.-C. Chen,
Eur. J. Org. Chem. 2009, 5804–5809; f) H.-L. Cui, X. Feng, J.
Peng, J. Lei, K. Jiang, Y.-C. Chen, Angew. Chem. 2009, 121,
5847–5850; Angew. Chem. Int. Ed. 2009, 48, 5737–5740; g) Z.-
K. Hu, H.-L. Cui, K. Jiang, Y.-C. Chen, Sci. China. Ser. B
Chem. 2009, 52, 1309–1313; h) X. Feng, Y.-Q. Yuan, H.-L. Cui,
K. Jiang, Y.-C. Chen, Org. Biomol. Chem. 2009, 7, 3660–3662.
[5]
[6]
[2] a) M. W. Paixão, N. Holub, C. Vila, M. Nielsen, K. A.
Jørgensen, Angew. Chem. 2009, 121, 7474–7478; Angew. Chem.
Int. Ed. 2009, 48, 7338–7342; b) H. Jiang, M. W. Paixão, D.
Monge, K. A. Jørgensen, J. Am. Chem. Soc. 2010, 132, 2775–
2783; c) L. Lykke, D. Monge, M. Nielsen, K. A. Jørgensen,
Chem. Eur. J. 2010, 16, 13330–13334; d) T. B. Poulsen, C.
Alemparte, S. Saaby, M. Bella, K. A. Jørgensen, Angew. Chem.
2005, 117, 2956–2959; Angew. Chem. Int. Ed. 2005, 44, 2896–
2899; e) S. Lou, B. M. Taoka, A. Ting, S. E. Schaus, J. Am.
Chem. Soc. 2005, 127, 11256–11257; f) S. Nakamura, M. Haya-
shi, Y. Hiramatsu, N. Shibata, Y. Funahashi, T. Toru, J. Am.
Chem. Soc. 2009, 131, 18240–18241; g) T. Bui, M. Borregan,
C. F. Barbas III, J. Org. Chem. 2009, 74, 8935–8938; h) H.
Zhang, S. Syed, C. F. Barbas III, Org. Lett. 2010, 12, 708–711;
i) N. Shibata, E. Suzuki, T. Asahi, M. Shiro, J. Am. Chem. Soc.
2001, 123, 7001–7009; j) J. Lou, L.-W. Xu, R. A. S. Hay, Y. Lu,
Org. Lett. 2009, 11, 437–440; k) Q. Zhu, Y. Lu, Angew. Chem.
2010, 122, 7919–7922; Angew. Chem. Int. Ed. 2010, 49, 7753–
7756; l) P. Li, S. Wen, F. Yu, Q. Liu, W. Li, Y. Wang, X. Liang,
J. Ye, Org. Lett. 2009, 11, 753–756; m) B. Tan, X. Zhang, P. J.
Chua, G. Zhong, Chem. Commun. 2009, 45, 779–781; n) F.
Wang, X. Liu, X. Cui, Y. Xiong, X. Zhou, X. Feng, Chem.
Eur. J. 2009, 15, 589–592; o) Q. Zhu, Y. Lu, Org. Lett. 2009,
11, 1721–1724; p) C. Gioia, F. Fini, A. Mazzanti, L. Bernardi,
A. Ricci, J. Am. Chem. Soc. 2009, 131, 9614–9615; q) X.-M.
Li, B. Wang, J.-M. Zhang, M. Yan, Org. Lett. 2011, 13, 374–
377; r) T. Bui, N. R. Candeias, C. F. Barbas III, J. Am. Chem.
Soc. 2010, 132, 5574–5575.
[3] For reviews on the Morita–Baylis–Hillman reaction, see: a)
S. E. Drewes, G. H. P. Roos, Tetrahedron 1988, 44, 4653–4670;
b) D. Basavaiah, P. D. Rao, R. S. Hyma, Tetrahedron 1996, 52,
8001–8062; c) E. Ciganek in Organic Reactions (Ed.: L. A. Pa-
quette), Wiley, New York, 1997, vol. 51, pp. 201–350; d) P.
Langer, Angew. Chem. 2000, 112, 3177–3180; Angew. Chem.
Int. Ed. 2000, 39, 3049–3051; e) D. Basavaiah, A. J. Rao, T.
Satyanarayana, Chem. Rev. 2003, 103, 811–892; f) Y.-L. Shi,
M. Shi, Eur. J. Org. Chem. 2007, 2905–2916; g) G. Masson, C.
Housseman, J.-P. Zhu, Angew. Chem. 2007, 119, 4698–4712;
Angew. Chem. Int. Ed. 2007, 46, 4614–4628; h) D. Basavaiah,
K. V. Rao, R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581–1588;
i) C. Menozzi, P. I. Dalko, “Organocatalytic Enantioselective
Morita–Baylis–Hillman Reactions” in Enantioselective Organ-
ocatalysis: Reactions and Experimental Procedures (Ed.: P. I.
Dalko), Wiley-VCH, Weinheim, 2007, 151–187; j) V. Dederck,
J. Mattinez, F. Lamaty, Chem. Rev. 2009, 109, 1–48; k) G.-N.
Ma, J.-J. Jiang, M. Shi, Y. Wei, Chem. Commun. 2009, 45,
5496–5514; l) D. Basavaiah, B. S. Reddy, S. S. Badsara, Chem.
Rev. 2010, 110, 5447–5674; m) S. Hatakeyama, J. Synth. Org.
Chem. Jpn. 2006, 64, 1132–1138.
[7]
a) L. Hong, W.-S. Sun, C.-X. Liu, D.-P. Zhao, R. Wang, Chem.
Commun. 2010, 46, 2856–2858; b) W.-S. Sun, L. Hong, C.-X.
Liu, R. Wang, Org. Lett. 2010, 12, 3914–3917.
[8] a) Y. Iwabuchi, M. Nakatani, N. Yokoyama, S. Hatakeyama,
J. Am. Chem. Soc. 1999, 121, 10219–10220; b) S. Kawahara,
A. Nakano, T. Esumi, Y. Iwabuchi, S. Hatakeyama, Org. Lett.
2003, 5, 3103–3105; c) A. Nakano, K. Takahashi, J. Ishihara,
S. Hatakeyama, Org. Lett. 2006, 8, 5357–5360; d) M. Shi, Y.-
M. Xu, Angew. Chem. 2002, 114, 4689–4692; Angew. Chem.
Int. Ed. 2002, 41, 4507–4510; e) F. Zhong, G.-Y. Chen, Y. Lu,
Org. Lett. 2011, 13, 82–85; f) Y.-L. Liu, B.-L. Wang, J.-J. Cao,
L. Chen, Y.-X. Zhang, C. Wang, J. Zhou, J. Am. Chem. Soc.
2010, 132, 15176–15178; g) X.-Y. Guan, Y. Wei, M. Shi, Eur.
J. Org. Chem. 2010, 4098–4105; h) X.-Y. Guan, Y. Wei, M. Shi,
Chem. Eur. J. 2010, 16, 13617–13621.
[9] Crystal data for organocatalyst cat-VIII: Empirical formula:
C26H29N3O3; formula weight: 413.52; crystal color, habit:
colorless,
prismatic;
crystal
dimensions:
0.356ϫ0.311ϫ0.270 mm; crystal system: orthorhombic; lat-
tice type: primitive; lattice parameters: a = 9.5509(13) Å, b =
12.7565(17) Å, c = 18.691(3) Å, α = 90°, β = 90°, γ = 90°, V =
2277.2(5) Å3; space group: P212121; Z = 4; Dcalcd. = 1.259 g/
cm3; F(000) = 920; diffractometer: Rigaku AFC7R; residuals:
R, Rw: 0.0545, 0.1392. CCDC-770089 contains the supplemen-
tary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[10] Crystal data for 5fa: Empirical formula: C20H20BrNO5S; for-
mula weight: 466.34; crystal color, habit: colorless; crystal di-
mensions: 0.359ϫ0.321ϫ0.258 mm; crystal system: ortho-
rhombic; lattice type: primitive; lattice parameters:
a =
9.5008(10) Å, b = 14.2871(15) Å, c = 15.2971(16) Å, α = 90°, β
= 90°, γ = 90°, V = 2075.7(4) Å3; space group: P212121; z =
4; Dcalcd. = 1.492 g/cm3; F(000) = 952; diffractometer: Rigaku
AFC7R; residuals: R, Rw: 0.0383, 0.0741. CCDC-796340 con-
tains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[4] For selected reports on SN2Ј–SN2Ј substitution of Morita–
Baylis–Hillman acetates or carbonates, see: a) B. M. Trost,
M. R. Machacek, H. C. Tsui, J. Am. Chem. Soc. 2005, 127,
7014–7024; b) C.-W. Cho, J.-R. Kong, M. J. Krische, Org. Lett.
2004, 6, 1337–1339; c) C.-W. Cho, M. J. Krische, Angew. Chem.
Received: April 8, 2011
Published Online: June 10, 2011
4484
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 4479–4484