J.W. Faller, P.P. Fontaine / Journal of Organometallic Chemistry 691 (2006) 1912–1918
2
1917
The 13C labeled 3,3-dimethylallylbromide was then sub-
4.5.4. H-labeled 4a
jected to analogous conditions as was described for the
preparation of 2a. H NMR (CDCl3, 400 MHz): 4.86 (m,
1H NMR (CDCl3, 400 MHz): 5.55 (br t, 1H), 3.64 (s,
6H), 2.77 (br s, 2H), 2.60 (m, 2H), 1.71 (s, 3H, Me), 1.70
(s, 3H, Me). 13C NMR (CDCl3, 100.6 MHz): 172.2,
130.0, 125.8 (t, J = 24 Hz), 124.1, 122.7, 54.5, 53.0, 32.5,
31.4, 20.9, 20.4.
1
1H), 3.70 (s, 6H), 2.75 (dd, 2H, JCH = 132.0 Hz,
J = 8.0 Hz), 2.73 (dd, 2H, J = 4.0 Hz, 3.0 Hz), 1.98 (t,
1H, J = 3.0 Hz), 1.66 (s, 3H), 1.62 (s, 3H). 13C NMR
(CDCl3, 100.6 MHz): 170.4, 136.8, 117.0 (d, J = 45 Hz),
79.2, 57.1 (d, J = 34 Hz), 52.6, 30.7, 26.0 (d, J = 5 Hz),
22.5, 17.8.
4.5.5. 13C-labeled 4a
1H NMR (CDCl3, 400 MHz): 6.47 (m, 1H), 5.65 (m,
1H), 3.73 (s, 6H), 2.86 (m, 2H), 2.69 (dm, 2H,
JCH = 131.6 Hz), 1.80 (s, 3H, Me), 1.79 (s, 3H, Me). 13C
NMR (CDCl3, 125.8 MHz): 171.8, 129.7, 125.7, 123.8,
122.5 (d, J = 40 Hz), 53.1 (d, J = 41 Hz), 52.6, 32.1, 31.1,
20.5, 20.0. A COSY spectrum showed coupling between
the CH2 resonance corresponding to the protons on the
13C atom and the olefin resonance at 5.65 ppm. Also, an
NOE difference spectrum showed contacts between these
same resonances (at 2.69 and 5.65 ppm).
4.4. General method for ruthenium catalyzed enyne
cycloisomerization
A
flame-dried flask was charged with 1 (6 mg,
0.010 mmol) under a stream of nitrogen. The appropriate
amount of solvent was then added by syringe, and to this
solution was added the 1,6-enyne (0.10 mmol), and then
AgSbF6 (7 mg, 0.020 mmol) under a stream of nitrogen.
The resulting mixture was allowed to stir with the exclusion
of light overnight for 16 h, at which point it was dried
under vacuum. The residue was passed through a small sil-
ica plug in Et2O in order to remove the inorganic species.
Purification of the organic portion was done by column
chromatography over silica gel eluting with 1:9
EtOAc:hexanes.
Appendix A. Supporting information
1
Selected 13C and H NMR of new compounds. Supple-
mentary data associated with this article can be found,
4.5. Spectral characterization for new products
References
4.5.1. 5-Isopropylidene-cyclohex-3-ene-1,1-dicarboxylic acid
dimethyl ester (4a)
[1] C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 102 (2002) 813.
[2] S.T. Diver, A.J. Giessert, Chem. Rev. 104 (2004) 1317.
[3] G.C. Lloyd-Jones, Org. Biomol. Chem. 1 (2003) 215.
[4] C. Nieto-Oberhuber, M.P. Munoz, E. Bunuel, C. Nevado, D.J.
Cardenas, A.M. Echavarren, Angew. Chem., Int. Ed. 43 (2004) 2402.
[5] R. Grigg, P. Stevenson, T. Worakun, Tetrahedron 44 (1988) 4967.
[6] T. Kitamura, Y. Sato, M. Mori, Chem. Commun. (2001) 1258.
[7] H. Kim, C.B. Lee, J. Am. Chem. Soc. 127 (2005) 10180.
[8] M. Mendez, M.P. Munoz, A.M. Echavarren, J. Am. Chem. Soc. 122
(2000) 11549.
[9] M.P. Munoz, M. Mendez, C. Nevado, D.J. Cardenas, A.M.
Echavarren, Synthesis (2003) 2898.
[10] M. Nishizawa, V.K. Yadav, M. Skwarczynski, H. Takao, H.
Imagawa, T. Sugihara, Org. Lett. 5 (2003) 1609.
[11] J.W. Faller, D.G. D’Alliessi, Organometallics 22 (2003) 2749.
[12] J.W. Faller, P.P. Fontaine, Organometallics 24 (2005) 4132.
[13] L. Charruault, V. Michelet, R. Taras, S. Gladiali, J.P. Genet, Chem.
Commun. (2004) 850.
[14] S. Oi, I. Tsukamoto, S. Miyano, Y. Inoue, Organometallics 20 (2001)
3704.
1H NMR (CDCl3, 400 MHz): 6.45 (dt, 1H, J = 10.1 Hz,
J = 1.8 Hz), 5.64 (dt, 1H, J = 10.1 Hz, J = 4.0 Hz), 3.72 (s,
6H), 2.87 (br s, 2H), 2.67 (m, 2H), 1.80 (s, 3H, Me), 1.79 (s,
3H, Me). 13C NMR (CDCl3, 100.6 MHz): 172.2, 130.1,
126.0, 124.1, 122.9, 54.5, 53.0, 32.5, 31.4, 20.9, 20.4.
4.5.2. 5-Ethylidene-cyclohex-3-ene-1,1-dicarboxylic acid
dimethyl ester (4b)
1H NMR (CDCl3, 400 MHz): 6.43 (dt, 1H, J = 10.4 Hz,
J = 2 Hz), 5.77 (dt, 1H, J = 10.4 Hz, J = 4.8 Hz), 5.35 (q,
1H, J = 7.2 Hz), 3.71 (s, 6H, OMe), 2.80 (m, 2H), 2.70
(m, 2H), 1.70 (d, 3H, J = 7.2 Hz). 13C NMR (CDCl3,
125.8 MHz): 170.5, 128.8, 124.2, 122.7, 121.9, 53.0, 51.9,
36.2, 30.7, 11.8. The stereochemistry was determined by
an NOE difference experiment in which irradiation of the
exo olefinic proton resonance resulted in an NOE enhance-
ment to the methyl protons as well as a CH2 resonance at
2.80 ppm.
[15] M. Mendez, M.P. Munoz, C. Nevado, D.J. Cardenas, A.M.
Echavarren, J. Am. Chem. Soc. 123 (2001) 10511.
[16] L. Anorbe, G. Dominguez, J. Perez-Castells, Chem. Eur. J. 10 (2004)
4938.
[17] N. Chatani, H. Inoue, T. Kotsuma, S. Murai, J. Am. Chem. Soc. 124
(2002) 10294.
[18] N. Chatani, T. Morimoto, T. Muto, S. Murai, J. Am. Chem. Soc.
116 (1994) 6049.
4.5.3. 3-Styryl-cyclopent-3-ene-1,1-dicarboxylic acid
dimethyl ester (3c)
1H NMR (CDCl3, 400 MHz): 7.42 (d, 2H, J = 7.2 Hz),
7.33 (t, 2H, J = 7.2 Hz), 7.25 (d, 1H, J = 7.2 Hz), 6.92 (d,
1H, J = 16.0 Hz), 6.47 (d, 1H, J = 16.0 Hz), 5.72 (br s,
1H), 3.79 (s, 6H), 3.29 (br s, 2H), 3.19 (br s, 2H). 13C
NMR (CDCl3, 125.8 MHz): 172.9, 140.1, 137.6, 130.4,
129.0, 128.0, 127.8, 126.8, 124.7, 59.3, 53.4, 41.4, 40.1.
[19] A. Kinoshita, M. Mori, Synlett (1994) 1020.
[20] T. Kitamura, Y. Sato, M. Mori, Adv. Synth. Catal. 344 (2002) 678.
[21] A. Furstner, H. Szillat, F. Stelzer, J. Am. Chem. Soc. 122 (2000) 6785.
[22] A.M. Echavarren, C. Nevado, Chem. Soc. Rev. 33 (2004) 431.
[23] A. Furstner, F. Stelzer, H. Szillat, J. Am. Chem. Soc. 123 (2001)
11863.