810
S. Kováčová et al./Chemical Papers 64 (6) 806–811 (2010)
Table 3. Spectral data of newly prepared compounds
Compound Spectral data
VIIaa
IR, ν˜/cm−1: 3300–2366 (br m, COOH), 1722 (s, C O), 1691 (s, C O), 1610 (m, C C), 1455 (m), 1428 (m), 1390
—
—
—
—
—
—
(m), 1343 (m), 1289 (w), 1243 (s, C—O from lactone), 1189 (m), 1116 (w), 1073 (m), 919 (br m), 853 (w), 787 (m),
749 (s), 664 (w)
1H NMR (DMSO-d6), δ: 12.53 (br s, 1 H, COOH), 7.99 (s, 1 H, H-4), 7.70 (dd, 1 H, J5,6 = 7.7 Hz, J5,7 = 1.6 Hz,
H-5), 7.61 (ddd, 1 H, J7,8 = 8.3 Hz, J6,7 = 7.0 Hz, J5,7 = 1.6 Hz, H-7), 7.42 (dm, 1 H, J7,8 = 8.3 Hz, w1/2 ≈ 2.5
Hz, among others J6,8 = 1.2 Hz, H-8), 7.37 (ddd, 1 H, J5,6 = 7.7 Hz, J6,7 = 7.0 Hz, J6,8 = 1.2 Hz, H-6), 3.51 (s, 2
H, CH2COO)
13C NMR (CDCl3), δ: 169.0 (s, COOH), 161.5 (s, C-2), 153.5 (s, C-9), 142.0 (d, C-4), 131.6 (d, C-7), 127.8 (d, C-5),
124.6 (d, C-6), 121.9 and 119.0 (2 × s, C-3 and C-10), 116.7 (d, C-8), 35.9 (t, CH2)
VIIba
VIIca
1H NMR (DMSO-d6), δ: 8.44 (s, 2 H, H-4), 7.83 (dd, 2 H, J5,6 = 7.8 Hz, J5,7 = 1.5 Hz, H-5), 7.43 (ddd, 2 H, J5,6
= 7.8 Hz, J6,7 = 7.3 Hz, J6,8 = 1.0 Hz, H-6), 7.69 (ddd, 2 H, J7,8 = 8.3 Hz, J6,7 = 7.3 Hz, J5,7 = 1.5 Hz, H-7),
7.49 (dm, 2 H, J7,8 = 8.3 Hz, w1/2 ≈ 2.5 Hz, among others J6,8 = 1.0 Hz, H-8)
1H NMR (DMSO-d6), δ: 9.93 (s, 1 H, HO—), 8.26 (s, 1 H, H-4), 7.85 (d, 1 H, J11,12 = 16.9 Hz, H-12 or H-11), 7.76
(dd, 1 H, J5,6 = 7.6 Hz, J5,7 = 1.7 Hz, H-5), 7.59 (ddd, 1 H, J7,8 = 8.2 Hz, J6,7 = 7.4 Hz, J5,7 = 1.7 Hz, H-7),
7.56 (dd, 1 H, J17,18 = 7.9 Hz, J16,18 = 1.5 Hz, H-18), 7.42 (dm, 1 H, J7,8 = 8.2 Hz, w1/2 = 2.0 Hz, among others
J6,8 = 1.1 Hz, H-8), 7.37 (ddd, 1 H, J5,6 = 7.6 Hz, J6,7 = 7.4 Hz, J6,8 = 1.1 Hz, H-6), 7.21 (d, 1 H, J11,12 = 16.9
Hz, H-11 or H-12), 7.15 (ddd, 1 H, J15,16 = 8.3 Hz, J16,17 = 7.1 Hz, J16,18 = 1.5 Hz, H-16), 6.90 (dd, 1 H, J15,16
= 8.3 Hz, J15,17 = 1.1 Hz, H-15), 6.84 (ddd, 1 H, J17,18 = 7.9 Hz, J16,17 = 7.1 Hz, J15,17 = 1.1 Hz, H-17)
13C NMR (DMSO-d6), δ: 159.7 (s, C-2), 155.5 (s, ipso C-14), 152.2 (s, ipso C-9), 137.0 (d, C-4), 131.1 (d, C-7),
129.4 (d, C-16), 128.4 (d, C-12), 128.2 (d, C-5), 126.9 (d, C-18), 124.6, 124.5, and 123.5 (C-6, C-10, and C-17), 121.5
(d, C-11), 119.6 and 119.4 (C-3 and C-13), 115.9 (d, C-15), 115.8 (d, C-8)
VIIIaa
IR, ν˜/cm−1: 3219 (w, OH), 2925 (m), 2865 (w), 1690 (s, C O), 1613 (s, C O), 1459 (m), 1578 (m), 1505 (w),
—
—
—
—
1378 (m), 1312 (m), 1258 (m), 1223 (m), 1154 (m), 1076 (w), 853 (m), 791 (m)
1H NMR (DMSO-d6), δ: not seen (1 H, COOH), 7.83 (s, 1 H, H-4), 7.49 (d, 1 H, J5,6 = 8.5 Hz, H-5), 6.79 (dd, 1
H, J5,6 = 8.5 Hz, J6,8 = 2.3 Hz, H-6), 6.72 (d, 1 H, J6,8 = 2.3 Hz, H-8), 3.41 (s, 1 H, CH2)
13
—
C NMR (DMSO-d6), δ: 171.7 (s, COOH), 161.1 (s, C(2) O), 160.8 (s, C-7), 154.8 (s, C-9), 142.1 (d, C-4), 129.3
—
(d, C-5), 118.3 (s, C-3), 113.3 (d, C-6), 111.5 (s, C-10), 102.0 (d, C-8), 35.7 (t, CH2)
VIIIba
VIIIc
1H NMR (DMSO-d6), δ: 8.26 (s, 2H, C-4), 7.60 (d, 2H, J5,6 = 8.5 Hz, C-5), 6.83 (dd, 2H, J5,6 = 8.5 Hz, J6,8 = 2.3
Hz, C-6), 6.77 (d, 2H, J6,8 = 2.3 Hz, C-8), not seen (2H, —OH)
IR, ν˜/cm−1: 3288 (br s, OH), 2925 (s), 2856 (m), 1671 (m), 1621 (m), 1459 (m), 1378 (w), 1258 (m), 1076 (br m),
1015 (br m)
1H NMR (DMSO-d6), δ: 10.80 (s, 2 H, 2 × —OH), 9.79 (s, 1 H, —OH), 8.42 (s, 1 H, H-4), 7.74 (d, 1 H, J5,6 = 8.5
Hz, H-5), 7.47 (d, 1 H, J5,6 = 8.5 Hz, H-6), 7.43 (s, 1 H, H-8), 6.97 (s, 1 H, w1/2 = 4.7 Hz, H-15), 6.90–6.74 (m, 4
H, H-11, H-12, H-17, and H-18) with higher order multiplicity
IXaa
IXba
IXc
IR, ν˜/cm−1: 3223 (m), 2922 (s), 2852 (s), 1709 (s, C O), 1613 (s, C O), 1567 (m), 1509 (m), 1455 (m), 1385 (m),
—
—
—
—
1354 (w), 1289 (m), 1242 (m), 1188 (m), 1157 (s), 1119 (w), 1069 (w), 1027 (m), 972 (w), 818 (w), 783 (w), 726 (w)
1H NMR (DMSO-d6), δ: 8.32 (s, 2 H, H-4), 7.69 (d, 2 H, J5,6 = 8.6 Hz, H-5), 7.04 (s, 2 H, H-8), 6.99 (d, 2 H, J5,6
= 8.6 Hz, H-6), 3.89 (s, 6 H, —OMe)
IR, ν˜/cm−1: 3624–3061 (br m), 2937 (w), 1710 (s, C O), 1613 (s), 1505 (w), 1444 (br w), 1262 (m), 1208 (w), 1158
—
—
(m), 1031 (m), 799 (m)
1H NMR (DMSO-d6), δ: 9.94 (s, 1 H, —OH), 8.13 (s, 1 H, H-4), 7.68 (d, 1 H, J11,12 = 16.6 Hz, H-11), 7.65 (d, 1
H, J5,6 = 8.7 Hz, H-5), 7.45 (d, 1 H, J17,18 = 9.5 Hz, H-18), 7.03 (d, 1 H, J11,12 = 16.6 Hz, H-12), 7.02 (d, 1 H,
J6,8 = 2.4 Hz, H-8), 6.97 (dd, 1 H, J5,6 = 8.7 Hz, J6,8 = 2.4 Hz, H-6), 6.46 (d, 1 H, J15,17 = 2.4 Hz, H-15), 6.45
(dd, 1 H, J17,18 = 9.5 Hz, J15,17 = 2.4 Hz, H-17), 3.86 (s, 3 H, MeO—C(7)), 3.73 (s, 3 H, MeO—C(16))
Xa
Xb
1H NMR (DMSO-d6), δ: 12.36 (br s, 1 H, COOH), 7.76 (s, 1 H, H-4), 7.43 (d, 1 H, J5,6 = 8.8 Hz, H-5), 6.73 (dd, 1
H, J5,6 = 8.8 Hz, J6,8 = 2.4 Hz, H-6), 6.57 (d, 1 H, J6,8 = 2.4 Hz, H-8), 3.39 (s, 2 H, CH2), 3.02 (s, 6 H, —N(Me)2)
13C NMR (DMSO-d6) HMQC also, δ: 171.9 (s, COOH), 161.6 (s, C-2), 155.3 (s, C-9), 152.5 (s, C-7), 142.3 (d, C-4),
128.6 (d, C-5), 115.6 (s, C-3), 109.3 (d, C-6), 108.3 (s, C-10), 97.1 (d, C-8), 39.1 (q, —N(Me)2), 35.7 (t, CH2)
1H NMR (DMSO-d6), δ: 8.21 (s, 2 H, H-4), 7.53 (d, 2 H, J5,6 = 8.9 Hz, H-5), 6.77 (dd, 2 H, J5,6 = 8.9 Hz, J6,8
=
2.4 Hz, H-6), 6.60 (d, 2 H, J6,8 = 2.4 Hz, H-8), 3.06 (s, 12 H, 2 × (Me)2N—)
a) Known compounds with listed spectral data not yet described in literature.
Synthesis of 2-(2-oxo-2H-chromen-3-yl)acetic acid
(VIIa) was performed starting from salicylaldehyde
(III) in DMF under microwave irradiation (9 × 2 min
at the power of 250 W) in a 61 % yield (Fig. 2). Mi-
crowave irradiation significantly accelerated the reac-
tion compared to 5 h of heating at 185◦C (Ito, 1951)
or 1.5 h reflux in (Et)3N (Bochkov et al., 2008). By-
products VIIb and VIIc were obtained in 14 % and
4 % yields, respectively. The time of irradiation was
optimised by monitoring the consumption of salicy-
laldehyde (III) using TLC analysis (Table 1).
Synthesis of 2-(7-hydroxy-2-oxo-2H-chromen-3-yl)-
acetic acid (VIIIa) started from 2,4-dihydroxybenz-
aldehyde (IV ) according to the above described pro-