the oxygen atom in the furan ring is coordinated with titanium,
favoring the formation syn addition product 10a (Scheme 3,
pathway II).
sation of 6 with allylsilanes in substrate scope, but also offers for
the first time a reversal of stereochemistry. Thus, cis-disubstituted
g-aryl-b-methyl acetal lactones with good diastereoselectivity in
enantiomerically pure form can be obtained, which compares well
with previously reported methods.3–4
The poor diastereoselectivity achieved with the thienyl
nucleophile 8b could be explained by the weaker coordination
ability of sulfur to titanium, thus resulting in no preference
either for pathway I or II. The lower diastereoselectivity for
oxygenated aryltitanium reagents leading to 9d–9g compared
to 9a might reflect different degrees of internal delivery of
the nucleophile via coordination of titanium to the oxygen
substituents in the aryl rings. In agreement with this proposal
is the highly selective addition of allyltitanium 8h to 6 (Table 1,
entry 10), leading to 13 by directed delivery of the allyl nucle-
ophile via a Zimmerman–Traxler-like transition state (Scheme 3,
pathway III).
Lactone 9a seemed to be a suitable precursor to study the synthe-
sis of the northeastern segments of diterpenoids 1 and 2 Scheme 4).
Initial attempts to perform oxidative transformations on the furan
ring using a number of methods known for that moiety, i.e.
singlet oxygen oxidation, mCPBA or Jones oxidation12 to furnish
a g-hydroxybutenolide were unsuccessful. Using bromine13 in
methanol, however, afforded the 2,5-dimethoxy-2,5-dihydrofuran
14 in 75% yield, albeit as a mixture of three diastereomers in
a 1 : 1 : 2 ratio, from which 14c could be separated by chro-
matography. From the mixture of 14a and 14b the former was
obtained in pure form by crystallisation and its structure could be
assigned unambiguously by X-ray structural analysis. The major
diastereomer 14c was heated with Bredereck’s reagent14 to install
the a-dimethylaminomethylene handle, furnishing 15 in good yield
(81%). The model precursor product thus obtained satisfies the
1S,2S,3S (and 6S) configurations required in furanocembranoids
1 and 2.
Acknowledgements
A.P.G.M. is grateful to the Deutscher Akademischer Austausch-
dienst (DAAD) for a graduate fellowship.
References
1 (a) E. Brenna, C. Fuganti and S. Serra, Tetrahedron: Asymmetry, 2003,
14, 1; (b) H. C. Brown, S. V. Kulkarni and U. S. Racherla, J. Org. Chem.,
1994, 59, 365; (c) A. K. Ghosh and L. J. Swanson, J. Org. Chem., 2003,
68, 9823; (d) B. H. Lipshutz, A. Lower, R. J. Kucejko and K. Noson,
Org. Lett., 2006, 8, 2969; (e) E. L. Stangeland and T. Sammaki, J. Org.
Chem., 2004, 69, 2381; (f) J. W. Hilborn, Z.-H. Lu, A. R. Jurgens, O. K.
Fang, H. Byers, S. A. Wald and C. H. Senanayake,, Tetrahedron Lett.,
2001, 42, 8919.
2 (a) G. F. Russell and J. I. Hills, Science, 1971, 172, 1043; (b) L.
Friedmann and J. G. Miller, Science, 1971, 172, 1044; (c) K. Otsuka,
Y. Zenibayashi, M. Itoh and A. Totsuka, Agric. Biol. Chem., 1974, 38,
485; (d) J. H. Tumlinson, M. G. Klein, R. E. Doolittle, T. L. Ladd and
A. T. Proveaux, Science, 1977, 197, 789.
3 For reviews on asymmetric lactone synthesis see: (a) A. Schall and O.
Reiser, Eur. J. Org. Chem., 2008, 14, 2353; (b) M. Seitz and O. Reiser,
Curr. Opin. Chem. Biol., 2005, 9, 285; (c) R. Bandichhor, B. Nosse and
O. Reiser, Top. Curr. Chem., 2005, 243, 43.
4 (a) C. Forzato, G. Furlan, P. Nitti, G. Pittacco, E. Valentin, E.
Zangrando, P. Buzzini, M. Goretti and B. Turchetti, Tetrahedron:
Asymmetry, 2008, 19, 2026; (b) P. V. Ramachandran, K. J. Padiya,
V. Rauniyar, M. V. R. Reddy and H. C. Brown, Tetrahedron Lett., 2004,
45, 1015; (c) M. Ozeki, D. Hashimoto, K. Nishide, T. Kajimoto and
M. Node, Tetrahedron: Asymmetry, 2005, 16, 1663 and references cited
therein.
5 For the isolation of 1–4 see: (a) J. Marrero, A. D. Rodriguez, P. Baran,
R. G. Raptis, J. A Sanchez, E. Orteg-Barria and T. L. Capson, Org.
Lett., 2004, 6, 1661; (b) A. D. Rodriguez and Y.-P. Shi, J. Org. Chem.,
2000, 65, 5389; (c) J. Marrero, J. Benitez, A. D. Rodriguez, H. Zhao and
R. G. Raptis, J. Nat. Prod., 2008, 71, 381; (d) R. C. Cambie, A. R. Lal,
P. S. Rutledge and K. D. Wellington, Biochem. Syst. Ecol., 1997, 25,
565For the partial synthesis of 1: (e) B. Doroh and G. A. Sulikowski,
Org. Lett., 2006, 8, 903; (f) R. Miao, S. G. Gramani and M. J. Lear,
Tetrahedron Lett., 2009, 50, 1731.
6 (a) R. Bandichhor, B. Nosse, S. So¨rgel, C. Bo¨hm, M. Seitz and O.
Reiser, Chem.–Eur. J., 2003, 9, 260; (b) C. Bo¨hm and O. Reiser, Org.
Lett., 2001, 3, 1315; (c) M. Schinnerl, C. Bo¨hm, M. Seitz and O. Reiser,
Tetrahedron: Asymmetry, 2003, 14, 765; (d) S. Kalidindi, W. B. Jeong,
A. Schall, R. Bandichhor, B. Nosse and O. Reiser, Angew. Chem., Int.
Ed., 2007, 46, 6361.
7 (a) M. T. Reetz, J. Westermann, R. Steinbach, B. Wenderoth, R. Peter,
R. Ostarek and S. Maus, Chem. Ber., 1985, 118, 1421; (b) M. T. Reetz,
R. Steinbach, J. Westermann, R. Peter and B. Wenderoth, Chem. Ber.,
1985, 118, 1441; (c) H. Haarmann and W. Eberbach, Tetrahedron Lett.,
1991, 32, 903; (d) S. Zhou, C. R. Chen and H. M. Gau, Org. Lett., 2010,
12, 48; (e) A. P. G. Macabeo, Synlett, 2008, 20, 3247.
8 (a) H.-U. Reißig and R. Zimmer, Chem. Rev., 2003, 103, 1151; for
related approaches to g-butyrolactones utilising 1,2-donor–acceptor
substituted cyclopropanes see: (b) C. Bru¨ckner and H.-U. Reißig, J. Org.
Chem., 1988, 53, 2440; (c) H. Kunz and M. Lindig, Chem. Ber., 1983,
116, 220.
9 (a) J. Otera, N. Dan-oh and H. Nozaki, J. Org. Chem., 1991, 56, 5307;
(b) A. Orita, K. Sakamoto, Y. Hamada, A. Mitsutome and J. Otera,
Tetrahedron, 1999, 55, 2899.
Scheme 4
10 For the preparation of aryltitanium compounds see: (a) H. Takahashi,
K. Tanahashi, K. Higashiyama and H. Onishi, Chem. Pharm. Bull.,
1986, 34, 479; (b) K. Yoshida and T. Hayashi, J. Am. Chem. Soc., 2003,
125, 2872; (c) H. W. Lee, F. L. Lam, C. M. So, C. P. Lau, A. S. C. Chan
and F. Yee, Angew. Chem., Int. Ed., 2009, 48, 7436.
In conclusion, we have developed a new diastereoselective
approach towards g-aryl lactones utilising aryltitanium reagents in
combination with the readily available cyclopropanecarbaldehyde
6. This methodology extends the previously reported functionali-
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 3146–3150 | 3149
©