Addition of Nucleophiles to Ethyl 2-Methyl-2,3-butadienoate
[3] For some examples using carbon nucleophiles, see: a) B. M.
Trost, C.-J. Li, J. Am. Chem. Soc. 1994, 116, 3167–3168; b) C.
Zhang, X. Lu, Synlett 1995, 645–646; c) Z. Chen, G. Zhu, Q.
Jiang, D. Xiao, P. Cao, X. Zhang, J. Org. Chem. 1998, 63,
5631–5635; d) S. W. Smith, G. C. Fu, J. Am. Chem. Soc. 2009,
131, 14231–14233; e) R. Sinisi, J.-W. Sun, G. C. Fu, Proc. Natl.
Acad. Sci. USA 2010, 107, 20652–20654.
[4] For some examples using nitrogen nucleophiles, see: a) B. M.
Trost, G. R. Dake, J. Org. Chem. 1997, 62, 5670–5671; b) B. M.
Trost, G. R. Dake, J. Am. Chem. Soc. 1997, 119, 7595–7596; c)
B. Liu, R. Davis, B. Joshi, D. W. Reynolds, J. Org. Chem. 2002,
67, 4595–4598; d) C. Lu, X. Lu, Org. Lett. 2002, 4, 4677–4679;
e) V. Sriramurthy, G. A. Barcan, O. Kwon, J. Am. Chem. Soc.
2007, 129, 12928–12929; f) V. Sriramurthy, O. Kwon, Org. Lett.
2010, 12, 1084–1087.
[5] For some examples using oxygen nucleophiles, see: a) B. M.
Trost, C.-J. Li, J. Am. Chem. Soc. 1994, 116, 10819–10820; b)
C. Alvarez-Ibarra, A. G. Csaky, C. G. de la Oliva, Tetrahedron
Lett. 1999, 40, 8465–8467; c) S. Gabillet, D. Lecerclé, O. Lo-
reau, S. Dézard, J.-M. Gomis, F. Taran, Synthesis 2007, 515–
522; d) Y. K. Chung, G. C. Fu, Angew. Chem. 2009, 121, 2259–
2261; Angew. Chem. Int. Ed. 2009, 48, 2225–2227.
[6] For some examples using sulfur nucleophiles, see: a) S. Cab-
iddu, E. Cadoni, E. Ciuffarin, C. Fattuoni, C. Floris, J. Hetero-
cycl. Chem. 1991, 28, 1573–1580; b) S. Cabiddu, C. Fattuoni,
M. Lucarini, G. F. Pedulli, Tetrahedron 1994, 50, 4001–4008; c)
S. Gabillet, D. Lecerclé, O. Loreau, M. Carboni, S. Dézard, J.-
M. Gomis, F. Taran, Org. Lett. 2007, 9, 3925–3927; d) J.-W.
Sun, G. C. Fu, J. Am. Chem. Soc. 2010, 132, 4568–4569.
[7] a) S. R. Landor, The Chemistry of Allene (Ed.: S. R. Landor),
Academic Press, New York, 1982, vol. 2, pp. 361–397; b) X.
Huang, R.-W. Shen, Synthesis 2006, 2731–2737.
TLC using silica gel coated plates. Flash column chromatography
was carried out by using silica gel at increased pressure.
General Procedure for the PBu3-Catalyzed Reaction of Ethyl 2-
Methyl-2,3-butadienoate (1) with Phenols 2: Ethyl 2-methyl-2,3-but-
adienoate (1; 50 mg, 0.4 mmol), phenols (0.2 mmol), and PBu3
(8 mg, 0.04 mmol) were stirred in THF (3.0 mL) under argon in a
10 mL Schlenk tube. After stirring the reaction mixture at 60 °C
for 12 h, the solvent was removed under reduced pressure and the
residue was purified by flash column chromatography (SiO2;
EtOAc/petroleum ether, 1:30) to yield the corresponding product
3.
Compound (E)-3a: Colorless oil (23 mg, 92% yield, 0.1 mmol scale).
1H NMR (CDCl3, 300 MHz, TMS): δ = 1.29 (t, J = 7.2 Hz, 3 H,
CH3), 1.93 (d, J = 7.5 Hz, 3 H, CH3), 3.77 (s, 3 H, OCH3), 4.22
(q, J = 7.2 Hz, 2 H, OCH2), 4.73 (s, 2 H, OCH2), 6.80–6.85 (m, 2
H, Ar), 6.88–6.92 (m, 2 H, Ar), 7.19 (q, J = 7.5 Hz, 1 H, =CH)
ppm. 13C NMR (CDCl3, 75 MHz, TMS): δ = 14.2, 14.7, 55.7, 60.7,
62.6, 114.5, 116.1, 129.2, 144.2, 152.9, 154.0, 166.7 ppm. IR
(CH Cl ): ν = 2982, 2939, 2907, 2834, 1710, 1506, 1282, 1222, 1139,
˜
2
2
1036, 1012, 824, 732 cm–1. MS (EI): m/z (%) = 250 (13.6) [M]+, 124
(100.0), 123 (25.9), 109 (25.3), 95 (8.4), 53 (8.1), 205 (6.9), 54 (6.7),
41 (4.7). HRMS (EI): calcd. for C14H18O4 [M]+ 250.1205; found
250.1206.
Supporting Information (see footnote on the first page of this arti-
cle): Spectroscopic data of all new compounds shown in Tables 1–
5, detailed descriptions of experimental procedures.
[8] A. Padwa, P. E. Yeske, J. Org. Chem. 1991, 56, 6386–6390.
[9] For some examples of the reactions of ethyl 2-methyl-2,3-buta-
dienoates, see: a) M. E. Jung, N. Nishimura, J. Am. Chem. Soc.
1999, 121, 3529–3530; b) K. Kumar, A. Kapur, M. P. S. Ishar,
Org. Lett. 2000, 2, 787–789; c) S. Ma, H. Xie, G. Wang, J.
Zhang, Z. Shi, Synthesis 2001, 713–730; d) M. E. Jung, N. Ni-
shimura, Org. Lett. 2001, 3, 2113–2115; e) X. Zhu, J. Lan, O.
Kwon, J. Am. Chem. Soc. 2003, 125, 4716–4717; f) S. Ma, N.
Jiao, L. Ye, Chem. Eur. J. 2003, 9, 6049–6056; g) M. P. S. Ishar,
A. Kapur, T. Raj, N. K. Girdhar, A. Kaur, Synthesis 2004, 775–
778; h) S. Ma, H. Xie, Tetrahedron 2005, 61, 251–258; i) M. E.
Jung, N. Nishimura, A. R. Novack, J. Am. Chem. Soc. 2005,
127, 11206–11207; j) R. P. Wurtz, G. C. Fu, J. Am. Chem. Soc.
2005, 127, 12234–12235; k) G.-L. Zhao, Y.-L. Shi, M. Shi, Org.
Lett. 2005, 7, 4527–4530; l) M. E. Jung, A. R. Novack, Tetrahe-
dron Lett. 2005, 46, 8237–8240; m) M. Shi, L.-Z. Dai, Y.-L.
Shi, G.-L. Zhao, Adv. Synth. Catal. 2006, 348, 967–972; n) X.
Huang, R. Shen, T. Zhang, J. Org. Chem. 2007, 72, 1534–1537;
o) S. Castellano, H. D. G. Fiji, S. S. Kinderman, M. Watanade,
P. de Leon, F. Tamanoi, O. Kwon, J. Am. Chem. Soc. 2007,
129, 5843–5845; p) L.-Z. Dai, Y.-L. Shi, G.-L. Zhao, M. Shi,
Chem. Eur. J. 2007, 13, 3701–3706; q) Y. S. Tran, O. Kwon, J.
Am. Chem. Soc. 2007, 129, 12632–12633; r) X. Huang, F. Sha,
J. Org. Chem. 2008, 73, 1173–1175; s) B. Chen, Z. Lu, G. Chai,
C. Fu, S. Ma, J. Org. Chem. 2008, 73, 9486–9489; t) Y. Liang,
S. Liu, Z. Yu, Synlett 2009, 905–909; u) J. Yu, L. He, X.-H.
Chen, J. Song, W.-J. Chen, L.-Z. Gong, Org. Lett. 2009, 11,
4946–4949.
Acknowledgments
We thank the Shanghai Municipal Committee of Science and Tech-
nology (08dj1400100-2), the National Basic Research Program of
China (973-2010CB833302), and the National Natural Science
Foundation of China for financial support (21072206, 20872162,
20672127, 20821002, 20732008, and 20702059).
[1] For reviews of umpolung reactions, see: a) D. Seebach, Angew.
Chem. 1969, 81, 690–700; Angew. Chem. Int. Ed. Engl. 1969, 8,
639–649; b) D. Seebach, Synthesis 1969, 17–36; c) D. Seebach,
Angew. Chem. 1979, 91, 259–278; Angew. Chem. Int. Ed. Engl.
1979, 18, 239–258; d) T. A. Hase, Umpoled Synthons, Wiley,
New York, 1987; e) H. Stetter, H. Kuhlmann, Org. React. 1991,
40, 407–496; f) D. Enders, J. P. Shilvock, Chem. Soc. Rev. 2000,
29, 359–373; g) D. Enders, T. Balensiefer, Acc. Chem. Res. 2004,
37, 534–541; h) J. S. Johnson, Angew. Chem. 2004, 116, 1348–
1350; Angew. Chem. Int. Ed. 2004, 43, 1326–1328; i) A. B.
Smith, C. M. Adams, Acc. Chem. Res. 2004, 37, 365–377; j) C.
Kison, N. Meyer, T. Opatz, Angew. Chem. 2005, 117, 5807–
5809; Angew. Chem. Int. Ed. 2005, 44, 5662–5664; k) C.
Burstein, S. Tschan, X. Xie, F. Glorius, Synthesis 2006, 2418–
2439; l) R. Brehme, D. Enders, R. Fernandez, J. M. Lassaletta,
Eur. J. Org. Chem. 2007, 5629–5660; m) J. S. Dickstein, M. C.
Kozlowski, Chem. Soc. Rev. 2008, 37, 1166–1173; n) K. D. Mo-
eller, Synlett 2009, 1208–1218.
[10] a) Z.-R. He, X.-F. Tang, Z.-J. He, Phosphorus Sulfur Silicon
Relat. Elem. 2008, 183, 1518–1525; b) S.-L. Xu, W. Zou, G.-P.
Wu, H.-B. Song, Z.-J. He, Org. Lett. 2010, 12, 3556–3559; c)
I. C. Stewart, R. G. Bergman, F. D. Toste, J. Am. Chem. Soc.
2003, 125, 8696–8697.
[2] For reviews on the reactions of allenes and allenoates, see: a)
X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535–544;
b) S. Ma, Acc. Chem. Res. 2003, 36, 701–712; c) S. Ma, Chem.
Rev. 2005, 105, 2829–2871; d) B. J. Cowen, S. J. Miller, Chem.
Soc. Rev. 2009, 38, 3102–3116.
Received: January 22, 2011
Published Online: March 29, 2011
Eur. J. Org. Chem. 2011, 2673–2677
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2677