Tkatchenko and A. Dibenedetto, Synthesis of linear and cyclic carbon-
ates, in Carbon Dioxide as Chemical Feedstock, ed. M. Aresta, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, pp. 169–212.
2 M. Carafa and E. Quaranta, Mini-Rev. Org. Chem., 2009, 6, 168–183 and
references therein.
18 (a) N. C. Wang and H. J. Anderson, Can. J. Chem., 1977, 55, 4103–
4111; (b) N. Gabel, J. Org. Chem., 1962, 27, 301–303;
(c) R. M. Acheson and J. M. Vernon, J. Chem. Soc., 1961, 457–459;
(d) S. T. Handy, J. J. Sabatini, Y. Zhang and I. Vulfova, Tetrahedron Lett.,
2004, 45, 5057–5060; (e) U. Jacquemard, V. Bénéteau, M. Lefoix,
S. Routier, J.-Y. Mérour and G. Coudert, Tetrahedron, 2004, 60, 10039–
10047; (f) V. O. Illi, Synthesis, 1979, 397–388; (g) T. Itahara, Hetero-
cycles, 1986, 24, 2557–2562.
19 (a) D. L. Boger and M. Patel, J. Org. Chem., 1987, 52, 2319–2323;
(b) D. L. Boger and M. Patel, J. Org. Chem., 1987, 52, 3934–3936;
(c) N. Goyal, Synlett, 2010, 335–336.
20 (a) C. E. Loader and H. J. Anderson, Can. J. Chem., 1971, 49, 45–48;
(b) D. Dhanak and C. B. Reese, J. Chem. Soc., Perkin Trans. 1: Org.
Bio-Org. Chem. (1972–1999), 1986, 12, 2181–2186.
3 (a) M. Carafa, V. Mele and E. Quaranta, Green Chem., 2012, 14, 217–
225; (b) T. Baba, M. Fujiwara, A. Oosaku, A. Kobayashi, R. G. Deleon
and Y. Ono, Appl. Catal., A, 2002, 227, 1–6; (c) R. Juarez, A. Corma and
H. Garcia, Top. Catal., 2009, 52, 1688–1695; (d) E. Reixach, N. Bonet,
F. X. Rius-Ruiz, S. Wershofen and A. Vidal-Ferran, Ind. Eng. Chem.
Res., 2010, 49, 6362–6366; (e) I. Vauthey, F. Valot, C. Gozzi, F. Fache
and M. Lemaire, Tetrahedron Lett., 2000, 41, 6347–6350; (f) M. Distaso
and E. Quaranta, J. Catal., 2004, 228, 36–42; (g) M. Distaso and
E. Quaranta, Appl. Catal., B, 2006, 66, 72–80; (h) M. Distaso and
E. Quaranta, J. Catal., 2008, 253, 278–288; (i) S. Grego, F. Aricò
and P. Tundo, Pure Appl. Chem., 2012, 84, 695–705; ( j) R. Juarez,
A. Corma and H. Garcia, Pure Appl. Chem., 2012, 84, 685–694;
(k) L. F. Zhang, Y. Yang, Y. R. Xue, X. L. Fu, Y. An and G. H. Gao,
Catal. Today, 2010, 158, 279–285; (l) T. Sima, S. Guo, F. Shi and
Y. Deng, Tetrahedron Lett., 2002, 43, 8145–8147; (m) T. Yoshida,
M. Sasaki, F. Hirata, Y. Kawanami, K. Inazu, A. Ishikawa, K. Murai,
T. Echizen and T. Baba, Appl. Catal., A, 2005, 289, 174–178.
4 Actually, the studies cited below focused mainly on the use of (RO)2CO
(R = Me, benzyl) as an alkylating rather than alkoxocarbonylating agent
of HetNH substrates: (a) M. L. Laurila, N. A. Magnus and M. A. Stazak,
Org. Process Res. Dev., 2009, 13, 1199–1201; (b) S. Ouk, S. Thiébaud,
E. Borredon and B. Chabaud, Synth. Commun., 2005, 35, 3021–3026;
(c) W.-C. Shieh, S. Dell, A. Bach, O. Repic and T. Blacklock, J. Org.
Chem., 2003, 68, 1954–1957; (d) W.-C. Shieh, M. Lozanov, M. Loo,
O. Repic and T. Blacklock, Tetrahedron Lett., 2003, 44, 4563–4565;
(e) M. Selva, P. Tundo, D. Brunelli and A. Perosa, Green Chem., 2007, 9,
463–468.
21 The protocol followed to obtain the single points of each curve in
Fig. 1–5 has been described in Experimental. The legends of the figures
report the mean values of the DPC/HetNH (mol/mol) ratio and/or the
DBU load (mol% vs. HetNH) which were used in building up each
curve.
22 (a) The reaction mixture obtained by reacting 1, DPC and DBU (as for
the experimental conditions, see entry 1 in Table 3), after cooling to room
temperature, was dissolved in diethyl ether. The solution was washed
with distilled water, dried over MgSO4 and concentrated in vacuo. Upon
addition of n-hexane and cooling to 253 K, pure DPC precipitated and
was isolated by filtration. The mother liquor and washing solutions were
collected and the solvent was evaporated. From the residue, which was
fractionated on silica gel with petroleum ether/ethyl acetate (20 : 1 v/v),
pure 4 (90% yield) and more DPC (pure) were isolated. The total amount
of DPC recovered was equal to 90% of the excess used in the catalytic
run (b) The reaction mixture obtained by reacting 2, DPC and DBU
(1 : 3.8 : 0.1 mol/mol; 393 K, 12 h), after cooling to room temperature,
was dissolved in diethyl ether. The solution was washed with distilled
water, dried over MgSO4 and concentrated in vacuo. From the residue,
which was fractionated on silica gel with petroleum ether/diethyl ether
(20 : 1 v/v), pure 5 (76% yield) and DPC (70% of the excess used in the
catalytic run) were isolated, besides a few mixed fractions which were not
worked up further.
5 M. Carafa, M. Distaso, V. Mele, F. Trani and E. Quaranta, Tetrahedron
Lett., 2008, 49, 3691–3696.
6 (a) E. Quaranta, M. Carafa and F. Trani, Appl. Catal., B, 2009, 91, 380–
388; (b) S. Fan, N. Zhao, J. Li, F. Xiao, W. Wei and Y. Sun, Catal. Lett.,
2008, 120, 299–302; (c) X. Fu, Z. Zhang, C. Li, L. Wang, H. Ji, Y. Yang,
T. Zou and G. Gao, Catal. Commun., 2009, 10, 665–668.
23 E. P. Papadopulos and S. Harry, J. Org. Chem., 1966, 31, 327–329.
24 H. G. O. von Becker and H. J. Richter, J. Prakt. Chem., 1974, 316,
1013–1029.
7 T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis,
Wiley, New York, 3rd edn, 1999.
8 M. Natsume and H. Muratake, Tetrahedron Lett., 1979, 20, 3477–3480;
K. Nishide, S. Ichihashi, H. Kimura, T. Katoh and M. Node, Tetrahedron
Lett., 2001, 42, 9237–9240; N. P. Pavri and M. L. Trudell, Tetrahedron
Lett., 1997, 38, 7993–7996; J.-P. G. Seerden, M. Th. M. Tulp,
H. W. Scheeren and C. G. Kruse, Bioorg. Med. Chem., 1998, 6, 2103–
2110; G. Pandey, S. K. Tiwari, R. S. Singh and R. S. Mali, Tetrahedron
Lett., 2001, 42, 3947–3949; D. F. Huang and T. Y. Shen, Tetrahedron
Lett., 1993, 34, 4477–4480; G. M. P. Giblin, C. D. Jones and
N. S. Simpkins, J. Chem. Soc., Perkin Trans. 1, 1998, 3689–3697.
9 (a) J.-L. Paparin, C. Crévisy and L. Grée, Eur. J. Org. Chem., 2000,
3909–3918; (b) H. M. L. Davies, E. Sakali and W. B. Young, J. Org.
Chem., 1996, 56, 5696–5790; (c) M. Montana and M. P. Grima, Synth.
Commun., 2003, 33, 265–279; (d) N. Cramer, S. Laschat, A. Baro and
W. Frey, Synlett, 2003, 14, 2175–2177; (e) H. M. L. Davies, W. B. Young
and H. D. Smith, Tetrahedron Lett., 1989, 30, 4653–4656;
(f) M. Lounasmaa and T. Tamminen, in The Alkaloids, ed. G. A. Cordell,
Academic Press, San Diego, 1993, ch. 1, vol. 44; (g) G. Fodor and
R. Dharanipragada, Nat. Prod. Rep., 1993, 10, 199–206.
25 (a) S. Matsunaga, T. Kinoshita, S. Okada, H. Harada and M. Shibasaki,
J. Am. Chem. Soc., 2004, 126, 7559–7570; (b) D. A. Evans, G. Borg and
K. A. Scheidt, Angew. Chem., Int. Ed., 2002, 41, 3188–3191;
(c) J. Bergman, R. Carlsson and B. Sjoberg, J. Heterocycl.Chem., 1977,
14, 1123–1133.
26 (a) J. K. Aggarwal and A. Mereu, Chem. Commun., 1999, 2311–2312;
(b) M. Carafa, E. Mesto and E. Quaranta, Eur. J. Org. Chem., 2011,
2458–2465; (c) R. Reed, R. Reau, F. Dahan and G. Bertrand, Angew.
Chem., Int. Ed. Engl., 1993, 32, 399–401; (d) A. C. Savoca, in 1,8-Di-
azabicyclo[5.4.0]undec-7-ene in Encyclopedia of Reagents for Organic
Synthesis, ed. L. Paquette, J. Wiley & Sons, New York, 1995, vol. 2, pp.
1497–1503; (e) Superbases for Organic Synthesis: Guanidines, Amidines
and Phosphazenes and Related Organocatalysts, ed. T. Ishikawa, John
Wiley & Sons Ltd, Chichester, 2009.
27 pKa (in DMSO): pyrrole, 23.0; indole, 20.95, carbazole, 19.9.28a pKa (in
H2O): pyrrole, 17.51; indole, 16.97.28b pKa of DBUH+: 13.9 (DMSO);28c
13.4–12.9 (H2O).28d pKa of PhOH: 18.0 (DMSO) and 10 (H2O).28a
.
28 (a) F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456–463; (b) G. Yagil,
Tetrahedron, 1967, 23, 2855–2861; (c) R. Schwesinger, H. Schlemper,
C. Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway,
M. Fletschinger, J. Boele, H. Fritz, D. Putzas, H. W. Rotter,
F. G. Bordwell, A. V. Satish, G.-Z. Ji, E. M. Peters, H. G. Von Schnering
and L. Walz, Liebigs Ann., 1996, 1055–1081; (d) I. Hermecz, Adv.
Heterocycl. Chem., 1987, 42, 83–202.
10 O. R. Suarez-Castillo, L. Beiza-Granados, M. Melendez-Rodriguez,
A. Alvarez-Hernandez, M. S. Morales-Rios and P. Joseph-Nathan, J. Nat.
Prod., 2006, 69, 1596–1600.
11 D. L. Oldroyd, N. C. Payne, J. J. Vittal, A. C. Weedon and B. Zhang,
Tetrahedron Lett., 1993, 34, 1087–1090; D. J. Hastings and
A. C. Weedon, Can. J. Chem., 1991, 69, 1171–1181.
12 F. M. Albini, E. Albini, T. Bandiera and P. Caramella, J. Chem. Res.
Synop., 1984, 36–37; P. Caramella, A. Coda Corsico, A. Corsaro, D. Del
Monte and F. Marinone Albini, Tetrahedron, 1982, 38, 173–182.
13 J. Becherer and P. Koch, DE, 4 324 707, 1994.
14 L. Cotarca and H. Eckert, Phosgenations – A Handbook, Wiley-VCH,
Weinheim, 2004.
15 L. Grehn and U. Ragnarsson, Angew. Chem., Int. Ed. Engl., 1984, 23,
296–301.
16 L. A. Carpino and D. E. Barr, J. Org. Chem., 1966, 31, 764–767.
17 J. E. Macor, A. Cuff and L. Cornelius, Tetrahedron Lett., 1999, 40,
2733–2736.
29 J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy, Oxford
University Press, Oxford, 1988, ch. 7.
30 S. Gronowitz, A.-B. Hornfeldt, B. Gestblom and R. A. Hoffman, Ark.
Kemi, 1962, 18, 133–142.
31 Accordingly, the 13C NMR spectrum (125 MHz, 293 K) of an equimolar
mixture of 1 and DBU in (CD3)2SO practically corresponds to the super-
imposition of the 13C spectra of the single components (pyrrole and
DBU) in the same solvent, at similar concentrations and temperature,
except for the modest downfield shift (+0.19 ppm) experienced by the
imine carbon (C7) of DBU (see Experimental). The 13C resonance of the
latter nucleus (159.48 ppm, in (CD3)2SO) is particularly sensitive to
3384 | Green Chem., 2012, 14, 3377–3385
This journal is © The Royal Society of Chemistry 2012