ORGANIC
LETTERS
2011
Vol. 13, No. 11
2966–2969
Generation of Nitrile Oxides from Oximes
Using t-BuOI and Their Cycloaddition
Satoshi Minakata,*,† Sota Okumura,† Toshiki Nagamachi,† and Youhei Takeda‡
Department of Applied Chemistry and Frontier Research Base for Global Young
Researchers, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita,
Osaka 565-0871, Japan
Received April 22, 2011
ABSTRACT
tert-Butyl hypoiodite (t-BuOI) was found to be a powerful reagent for the cycloaddition of oximes and alkenes/alkynes, leading to the formation of a
variety of isoxazolines or isoxazoles under mild conditions.
The 1,3-dipolar cycloaddition of nitrile oxides to CÀC
unsaturated bonds has proven to be very useful for the
synthesis of isoxazolines and isoxazoles.1 These frame-
works are found in a wide variety of nitrogen heterocycles
that are molecular components of a large number of
natural products and biologically active compounds.2
Isoxazoline adducts that are produced in nitrile oxide/
alkene cycloaddition reactions can be used as masked
β-hydroxy carbonyl aldolate3 and β-amino alcohol4
equivalents. Nitrile oxides are commonly generated by
the elimination of HCl from hydroximinoyl chlorides in
the presence of a base.5 Hydroximinoyl chlorides can be
prepared from the corresponding oximes, derived from
aldehydes, and electrophilic chlorine-containing sources,
such as N-chlorosuccinimide (NCS), NaOCl, Cl2, etc.6
Although there are a few reports on the use of an electro-
philic bromine reagent, specifically N-bromosuccinimide
(NBS), for generating nitrile oxides from oximes,7 the use
of an electrophilic iodine reagent has not been reported to
date. As an alternate approach, dehydrative8 and oxidative9
processes were developed, and these methods have been
applied to the synthesis of complex molecules. In our
continuing interest in the area of monovalent iodine-con-
taining compounds, tert-butyl hypoiodite (t-BuOI) was
† Department of Applied Chemistry.
(6) (a) Liu, K. C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45,
3916–3918. (b) Katritzky, A. R.; Button, M. A. C.; Denisenko, S. N. J.
Heterocycl. Chem. 2000, 37, 1505–1510. (c) Lee, G. A. Synthesis 1982,
508–509. (d) Baruah, A. K.; Prajapati, O.; Sandhu, J. S. Tetrahedron
1988, 44, 1241–1246. (e) Ye, Y.; Zheng, Y.; Xu, G. Y.; Liu, L. Z.
Heteroatom Chem. 2003, 14, 254–257. (f) Kanemasa, S.; Matsuda, H.;
Kamimura, A.; Kakinami, T. Tetrahedron 2000, 56, 1057–1064. (g)
Kumar, V.; Kaushik, M. P. Tetrahedron Lett. 2006, 47, 1457–1460. (h)
Dubrovskiy, A. V.; Larock, R. C. Org. Lett. 2010, 12, 1180–1183.
(7) (a) Grundmann, C.; Richter, R. J. Org. Chem. 1968, 33, 476–478.
(b) Tsuge, O.; Kanemasa, S.; Suga, H. Chem. Lett. 1986, 183–186. (c)
Armstrong, S. K.; Collington, E. W.; Knight, J. G.; Naylor, A.; Warren,
S. J. Chem. Soc., Perkin Trans. 1 1993, 1433–1447.
(8) (a) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82,
5339–5342. (b) Shimizu, T.; Hayashi, Y.; Teramura, K. Bull. Chem. Soc.
Jpn. 1984, 57, 2531–2534. (c) Shimizu, T.; Hayashi, Y.; Shibafuchi, H.;
Teramura, K. Bull. Chem. Soc. Jpn. 1986, 59, 2827–2831. (d) Muri, D.;
Bode, J. W.; Carreira, E. M. Org. Lett. 2000, 2, 539–541.
(9) (a) Mendelsohn, B. A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh,
V. S.; Ciufolini, M. A. Org. Lett. 2009, 11, 1539–1542. (b) Jawalekar,
A. M.; Reubsaet, E.; Rutjes, F. P. J. T.; van Delft, F. L. Chem. Commun.
2011, 47, 3198–3200.
‡ Frontier Research Base for Global Young Researchers.
(1) (a) 1,3-Dipolar Cycloaddition Chemictry; Padwa, A., Ed.; Wiley:
New York, 1984; Vols. 1 and 2. (b) Torssell, K. B. G. Nitrile Oxides,
Nitrones, and Nitronates in Organic Synthesis; VCH: New York, 1988. (c)
Werner, A.; Buss, H. Chem. Ber. 1894, 27, 2193–2201. (d) Grundmann, C.
Synthesis 1970, 344–359. (e) Larsen, K. E.; Torssell, K. B. G. Tetra-
hedron 1984, 40, 2985–2988.
(2) (a) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410–416. (b)
Mousa, S. A.; Bozarth, J. M.; Naik, U. P.; Slee, A. Br. J. Pharmacol.
2001, 133, 311–336. (c) Park, K. K.; Ko, D. H.; You, Z.; Khan, M. O. F.;
Lee, H. J. Steroids 2006, 71, 183–188. (d) Leppik, I. E. Seizure 2004, 13S,
S5–S9. (e) Gopalsamy, A.; Shi, M.; Golas, J.; Vogan, E.; Jacob, J.;
Johnson, M.; Lee, F.; Nilakantan, R.; Petersen, R.; Svenson, K.;
Chopra, R.; Tam, M. S.; Wen, Y.; Ellingboe, J.; Arndt, K.; Boschelli,
F. J. Med. Chem. 2008, 51, 373–375. (f) Lamani, R. S.; Shetty, N. S.;
Kamble, R. R.; Khazi, I. A. M. Eur. J. Med. Chem. 2009, 44, 2828–2833.
(3) Curran, D. P. J. Am. Chem. Soc. 1983, 105, 5826–5833.
(4) Annunziata, R.; Cinquini, M.; Cozzi, F.; Gilardi, A.; Restelli, A.
J. Chem. Soc., Perkin Trans. 1 1985, 2289–2292.
(5) (a) Liu, K. C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45,
3916. (b) Larsen, K. E.; Torssel, K. B. G. Tetrahedron 1984, 40, 2985.
r
10.1021/ol2010616
Published on Web 05/11/2011
2011 American Chemical Society