previously succeeded in the palladium-free, copper-
mediated intermolecular direct biaryl coupling of azoles
with 2-arylazines (Scheme 1 a).5 The reaction is believed to
proceed through (i) direct CÀH cupration of azoles,6 (ii)
chelation-assisted second CÀH cupration of arylazines,7
and (iii) productive reductive elimination. In the course of
our studies on this chemistry, we envisaged that the second
CÀH cupration step could be replaced with the annulative
cupration of o-alkynylphenols (Scheme 1 b).8 Thus, if the
cascade process were feasible, an indirect but formally
dehydrogenative biheteroaryl coupling would be realized,
leading to a new type of oxidative biaryl construction from
nonhalogenated and nonmetalated starting materials.
Scheme 1. Oxidative, Dehydrogenative Biaryl Couplings
Mediated by Copper (Py = 2-Pyridyl)
(5) Kitahara, M.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M.
J. Am. Chem. Soc. 2011, 133, 2160.
(6) For selected recent examples, see: (a) Do, H.-Q.; Daugulis, O.
J. Am. Chem. Soc. 2007, 129, 12404. (b) Yoshizumi, T.; Tsurugi, H.;
Satoh, T.; Miura, M. Tetrahedron Lett. 2008, 49, 1598. (c) Yotphan, S.;
Bergman, R. G.; Ellman, J. A. Org. Lett. 2009, 11, 1511. (d) Monguchi,
D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett. 2009, 11, 1607.
(e) Yoshizumi, T.; Satoh, T.; Hirano, K.; Matsuo, D.; Orita, A.; Otera,
J.; Miura, M. Tetrahedron Lett. 2009, 50, 3273. (f) Kawano, T.; Yoshi-
zumi, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 3072.
(g) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org.
Lett. 2008, 10, 3081. (h) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.;
Moreover, the expected structures, 1,3,4-oxadiazole-con-
taining biaryls, exhibited a broad spectrum of physical9
and biological10 activities so that the reaction appears to be
of importance in synthetic chemistry.
Based on the above assumption, we began our optimiza-
tion studies with 2-(phenylethynyl)phenol (1a) and 2-phe-
nyl-1,3,4-oxadiazole (2a) as model substrates. In an initial
experiment, treatment of 1a with 2a in the presence of
CuF2, 1,10-phenanthroline (phen), and K3PO4 in N,
ꢀ
Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296. (i) Besselievre, F.;
Piguel, S. Angew. Chem., Int. Ed. 2009, 48, 9553. (j) Kitahara, M.; Hirano,
K.; Tsurugi, H.; Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 1772.
(k)Kawano, T.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org.
Chem. 2010, 75, 1764. (l) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M.
J. Am. Chem. Soc. 2010, 132, 6900.
(7) For copper-mediated direct functionalization of arylazines, see:
(a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.
2006, 128, 6790. (b) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett.
2006, 35, 842. (c) Mizuhara, T.; Inuki, S.; Oishi, S.; Fujii, M.; Ohno, H.
Chem. Commun. 2009, 3413. (d) Shuai, Q.; Deng, G.; Chua, Z.; Bohle,
D. S.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 632. (e) Chu, L.; Yue, X.;
Qing, F.-L. Org. Lett. 2010, 12, 1644. (f) Wang, W.; Luo, F.; Zhang, S.;
Cheng, J. J. Org. Chem. 2010, 75, 2415.
Table 1. Optimization Studies for Copper-Mediated Dehydro-
genative Annulative Coupling of 2-(Phenylethynyl)phenol (1a)
with 2-Phenyl-1,3,4-oxadiazole (2a)a
(8) For reviews of metal-mediated annulation of o-alkynylphenols
and -anilines, see: (a) Patil, N. T.; Yamamoto, Y Chem. Rev. 2008, 108,
3395. (b) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. Biomol. Chem.
2011, 9, 641. Selected examples:(c) Hiroya, K.; Itoh, S.; Sakamoto, T. J.
Org. Chem. 2004, 69, 1126. (d) Arcadi, A.; Cacchi, S.; Rosario, M. D.;
Fabrizi, G.; Marinelli, F. J. Org. Chem. 1996, 61, 9280. (e) Hu, Y.;
Nawoschilk, K. J.; Liao, Y.; Ma, J.; Fathi, R.; Yang, Z. J. Org. Chem.
2004, 69, 2235. (f) Nakamura, M.; Ilies, L.; Otsubo, S.; Nakamura, E.
Angew. Chem., Int. Ed. 2006, 45, 944. (g) Nakamura, M.; Ilies, L.;
Otsubo, S.; Nakamura, E. Org. Lett. 2006, 8, 2803. (h) Trost, B. M.;
McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074. (i) Tsuji, H.; Mitsui,
C.; Ilies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902.
entry
Cu/ligand (ratio)
base
solvent 3aa, % yieldb
1
2
CuF2/phen (10:1)
CuF2/phen (10:1)
CuF2/phen (10:1)
CuBr2/phen (10:1)
K3PO4
DMAc
36
ꢀ
(j) Martınez, C.; Alverez, R.; Aurrecoechea, J. M. Org. Lett. 2009, 11,
Cs2CO3 DMAc
Na2CO3 DMAc
27
1083. (k) Isono, N.; Lautens, M. Org. Lett. 2009, 11, 1329. (l) Swamy,
ꢀ
3
trace
N. K.; Yazici, A.; Pyne, S. G. J. Org. Chem. 2010, 75, 3412. (m) Alverez,
R.; Martınez, C.; Madich, Y.; Denis, J. G.; Aurrecoechea, J. M.; de Lera,
4
K3PO4
DMAc
DMAc
DMAc
DMAc
DMAc
DMAc
xylene
DMF
5
ꢀ
c
A. R. Chem.;Eur. J. 2010, 16, 12746. (n) Hirano, K.; Satoh, T.; Miura,
5
Cu(OAc)2/phen (10:1) K3PO4
Cu(acac)2/phen (10:1) K3PO4
Cu(OTf)2/phen (10:1) K3PO4
trace
M. Org. Lett. 2011, 13, 2395. (o) Ye, Y.; Fan, R. Chem. Commun. 2011,
47, 5626.
c
6
19
7
0
€
(9) (a) Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471. (b)
Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys.
8
CuF2/bpy (10:1)
CuF2/TMEDA (10:1)
CuF2/phen (10:1)
CuF2/phen (10:1)
CuF2/phen (10:1)
CuF2/phen (2:1)
CuF2/phen (1:1)
CuF2/none
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
K3PO4
0
Lett. 2000, 77, 904. (c) Guan, M.; Bian, Q.; Zhou, Y. F.; Li, F. Y.; Li,
9
4
€
Z. J.; Huang, C. H. Chem. Commun. 2003, 2708. (d) Yang, X.; Muller,
10
11
12
13
14
15
0
D. C.; Nether, D.; Meerholz, K. Adv. Mater. 2006, 18, 948. (e) Rehmann,
47
€
N.; Ulbricht, C.; Kohnen, A.; Zacharias, P.; Gather, M. C.; Hertel, D.;
DMSO
DMF
41
Holder, E.; Meerholz, K.; Schubert, U. S. Adv. Mater. 2008, 20, 129.
(f) He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108,
1245. (g) Tao, Y.; Wang, Q.; Yang, C.; Wang, Q.; Zhang, Z.; Zou, T.;
Qin, J.; Ma, D. Angew. Chem., Int. Ed. 2008, 47, 8104. (h) Shchekotikhin,
A. E.; Shevtsova, E. K.; Traven, V. F. Russ. J. Org. Chem. 2007, 43, 1686.
(10) (a) Leung, D.; Du, W.; Hardouin, C.; Cheng, H.; Hwang, I.;
Cravatt, B. F.; Boger, D. L. Bioorg. Med. Chem. Lett. 2005, 15, 1423.
(b) Zarudnitskii, E. V.; Pervak, I. I.; Merkulov, A. S.; Yurchenko, A. A.;
Tolmachev, A. A. Tetrahedron 2008, 64, 10431. (c) Peters, D.; Olsen,
G. M.; Nielsen, E. O.; Jorgensen, T. D.; Ahring, P. K. PCT Int. Appl.
2004, WO 2004029053, A1 20040408.
93 (75)
73
DMF
c
DMF
0
a Reaction conditions: Cu (0.60 mmol), ligand, base (0.90 mmol), 1a
(0.30 mmol), 2a (0.60 mmol), solvent (1.0 or 2.0 mL), rt, 8À45 h, air.
b The yields are determined by GC method. Yield of isolated product is
in parentheses. c With 0.60 mmol of K3PO4.
Org. Lett., Vol. 13, No. 12, 2011
3077