ORGANIC
LETTERS
2011
Vol. 13, No. 12
3106–3109
Conjugated “B-Entacenes”: Polycyclic
Aromatics Containing Two Borepin Rings
Anthony Caruso Jr.† and John D. Tovar*,†,‡
Department of Chemistry and Department of Materials Science and Engineering,
Johns Hopkins University, Baltimore, Maryland 21218, United States
Received April 16, 2011
ABSTRACT
The synthesis and characterization of functionalized bora-acenes (B-entacenes) where Stille and Sonogashira cross-couplings were used to
attach a series of electron-donating and -withdrawing substituents is reported. Photophysical, electrochemical, and computational analyses
revealed that the LUMO level can be tuned by changing the para-conjugated substituent. Furthermore, the dimethylamino-functionalized molecule
exhibited intense solvatochromism due to the intramolecular charge-transfer interaction.
Inthe searchfor new organic electronicmaterials, acenes
and heteroacenes have become leading candidates for
replacing amorphous silicon and other inorganics in sys-
tems that require low cost, highly tunable and easily
processable materials for applications such as thin film
transistors (TFTs),1 sensors2 and photovoltaics.3 Infact, in
some areas pentacene already rivals the performance of
amorphous silicon.4 To date, the majority of acenes and
heteroacenes synthesized and studied have been p-channel
(hole-transporting) semiconductors. Progress has been
made in preparing n-channel (electron-transporting)
materials based on acene-like platforms. Anthony5 and
Bao6 have independently reported the functionalization of
thienoacenes, pentacenes, and perylene diimides with
electron-deficient groups as a method of increasing the
electron-transporting ability of these materials. Bunz and
co-workers systematically replaced carbons in the acene
backbone with heteroatoms (specifically nitrogen) result-
ing in hole- and electron-transporting materials.7 There
remains a need for new electron-transporting materials
because of the difficulty in synthesizing air-stable n-chan-
nel semiconductors in their doped forms.
† Department of Chemistry.
(5) (a) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder., S. R.;
Zhan, X. Adv. Mater. 2010, 22, 3876–3892. (b) Swartz, C. R.; Parkin,
S. R.; Bullock, J. E.; Anthony, J. E.; Mayer, A. C.; Malliaras, G. G. Org.
Lett. 2005, 7, 3163–3166.
(6) (a) Okamoto, T.; Nakahara, K.; Saeki, A.; Seki, S.; Oh, J. H.;
Akkerman, H. B.; Bao, Z.; Matsuo, Y. Chem. Mater. 2011, 23, 1946–
1953. (b) Tang, M. L.; Oh, J. H.; Reichardt, A. D.; Bao, Z. J. Am. Chem.
Soc. 2009, 131, 3733–3740. (c) Tang, M. L.; Okamoto, T.; Bao, Z. J. Am.
Chem. Soc. 2006, 128, 16002–16003.
(7) (a) Wu, J. I.; Wannere, C. S.; Mo, Y.; Schleyer, P. v. R.; Bunz,
U. H. F. J. Org. Chem. 2009, 74, 4343–4349. (b) Miao, S.; Appleton, A.;
Berger, N.; Barlow, S.; Marder, S. R.; Hardcastle, K. I.; Bunz, U. H. F.
Chem.;Eur. J. 2009, 15, 4990–4993.
‡ Department of Materials Science and Engineering.
(1) (a) Pisula, W.; Feng, X.; Mullen, K. Chem. Mater. 2011, 23, 554–
567. (b) Jung, B. J.; Lee, K.; Sun, J.; Andreou, A. G.; Katz, H. E. Adv.
Funct. Mater. 2010, 20, 2930–2944.
(2) Khan, H. U.; Roberts, M. E.; Knoll, W.; Bao, Z. Chem. Mater.
2011, 23, 1946–1953.
(3) Facchetti, A. Chem. Mater. 2011, 3, 733–758. (b) Brunetti, F. G.;
Gong, X.; Tong, M.; Heeger, A. J.; Wudl, F. Angew. Chem., Int. Ed.
2010, 49, 532–536. (c) Gorodetsky, A. A.; Cox, M.; Tremblay, N. J.;
Kymissis, I.; Nuckolls, C. Chem. Mater. 2009, 21, 4090–4092. (d) Ling,
M. M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z. Adv.
Mater. 2007, 19, 1123–1127.
(4) (a) Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm,
C.; Schutz, M.; Maisch, S.; Effenerger, F.; Brunnbauer, M.; Stellacci, F.
Nature 2004, 431, 963–966. (b) Dimitrakopoulos, C. D.; Malenfant,
P. R. L. Adv. Mater. 2002, 14, 99–117. (c) Lin, Y. Y.; Gundlach, D. J.;
Nelson, S. F.; Jackson, T. N. IEEE Trans. Electron Devices 1997, 44,
1325.
(8) (a) Wakamiya, A.; Mori, K.; Araki, T.; Yamaguchi, S. J. Am.
Chem. Soc. 2009, 131, 10850–10851. (b) Wakamiya, A.; Mishima, K.;
Ekawa, K.; Yamaguchi, S. Chem. Commun. 2008, 579–581. (c) Yama-
guchi, S.; Wakamiya, A. Pure Appl. Chem. 2006, 78, 1413–1424. (d)
Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. J. Am. Chem.
Soc. 2002, 124, 8816–8817.
r
10.1021/ol2010159
Published on Web 05/23/2011
2011 American Chemical Society