Journal of the American Chemical Society
COMMUNICATION
Scheme 3. Asymmetric Dearomatization of Phenolsa,b,c
’ ACKNOWLEDGMENT
We thank the National Institutes of Health for financial
support of this work (Grant GM46059). S.R. thanks NSERC
for a CGS-D Postgraduate Fellowship and an MSFSS Award. M.
A.D.A.S. thanks the Spanish MEC for a doctoral fellowship. The
Varian 300 MHz NMR spectrometer used for a portion of this
work was purchased with funds from the National Science
Foundation (Grants CHE 9808061 and DBI 9729592). We also
thank a reviewer for bringing ref 8 to our attention.
’ REFERENCES
(1) For selected reviews, see: (a) Mander, L. N. Synlett 1991, 134.
(b) Pelter, A.; Ward, R. S. Tetrahedron 2001, 57, 273. (c) K€undig, E. P.;
Pape, A. Top. Organomet. Chem. 2004, 7, 71. (d) Harman, W. D. Top.
Organomet. Chem. 2004, 7, 95. (e) Quideau, S.; Pouysꢀegu, L.; Deffieux,
D. Curr. Org. Chem. 2004, 8, 113. (f) Quideau, S.; Pouysꢀegu, L.; Deffieux,
D. Synlett 2008, 467.
(2) For a recent review of the use of dearomatization protocols in
natural product synthesis, see: Roche, S. P.; Porco, J. A., Jr. Angew. Chem.,
Int. Ed. 2011, 50, 4068.
a Reaction conditions: Pd(OAc)2 (4 mol %), H2O (16 mol %), L2 or L3
(12 mol %), K2CO3 (1.5 equiv), and phenol (0.10 mmol) in 1,4-dioxane
(0.5 mL) at 80 °C for 16 h. b GC yields using dodecane as an internal
standard. c ee values were determined by HPLC.
(3) For a review, see: Quideau, S. In Modern Arene Chemistry; Astruc,
D., Ed.; Wiley-VCH, Weinheim, Germany, 2002; p 539.
preparation exist.16 An evaluation of chiral ligands revealed that a
catalyst based on KenPhos (L2)17 enabled the formation of 2b in
91% GC yield with a moderate but promising enantiomeric excess
of 65% (Scheme 3).18 Both the yield and ee were further improved
to 99 and 91%, respectively, when L3 was employed; this ligand,
which bears an additional element of chirality on the phosphorus
atom, had been reported previously by our group in the enantio-
selective R-arylation and R-vinylation of oxindoles.19,20 The use of
a catalyst based on L3 was extended to the asymmetric synthesis of
2f, which was obtained in 74% GC yield and 81% ee. Importantly,
employing a water-mediated catalyst activation protocol to form
the active L*Pd(0) complex was found to be crucial for obtaining
good ee’s in a reproducible manner.18,21
Finally, studies revealed that the presence of a free hydroxyl
group is essential for the observed reactivity. When methyl- or
benzyl-protected derivatives of phenol 1a were submitted to the
standard reaction conditions, little to no product was observed.
These results suggest that deprotonation is required in order to
induce nucleophilic attack at the Pd(II) center (Scheme 2).
In conclusion, we have developed a transition-metal-catalyzed
arylative dearomatization of phenols to provide spirocyclohex-
adienones bearing all-carbon quaternary centers in good to
excellent yields. Initial studies demonstrated that the devel-
opment of a highly enantioselective variant of this reaction is
practical, with ee’s of up to 91% currently being obtained using a
catalyst system based on L3. The scope of electron-rich arenes
that may be dearomatized using this palladium-catalyzed proto-
col, with a focus on the development of asymmetric intermole-
cular processes, is currently under investigation.
(4) For selected examples, see: (a) Bell, H. C.; May, G. L.; Pinhey,
J. T.; Sternhell, S. Tetrahedron Lett. 1976, 17, 4304. (b) Barton, D. H. R.;
Blazejewski, J.-C.; Charpiot, B.; Motherwell, W. B. J. Chem. Soc., Chem.
Commun. 1981, 503. (c) Barton, D. H. R.; Yadav-Bhatnagar, N.; Finet,
J.-P.; Khamsi, J.; Motherwell, W. B.; Stanforth, S. P. Tetrahedron 1987,
43, 323. (d) Ozanne-Beaudenon, A.; Quideau, S. Angew. Chem., Int. Ed.
2005, 44, 7065.
(5) Guꢀerard, K. C.; Sabot, C.; Racicot, L.; Canesi, S. J. Org. Chem.
2009, 74, 2039.
(6) For a review of the synthesis of diaryl ethers, see: Frlan, R.; Kikelj,
D. Synthesis 2006, 2271.
(7) For selected examples of phenol C-arylation, see: (a) Hennings,
D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2. (b) Satoh, T.;
Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997,
36, 1740. (c) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert,
M. E. Angew. Chem., Int. Ed. 2003, 42, 112. (d) Oi, S.; Watanabe, S.;
Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003, 44, 8665. (e) Bedford, R. B.;
Betham, M.; Caffyn, A. J. M.; Charmant, J. P. H.; Lewis-Alleyne, L. C.;
Long, P. D.; Polo-Cerꢀon, D.; Prashar, S. Chem. Commun. 2008, 990.
(8) For the use of a Pd(0)-catalyzed arylative dearomatization in the
synthesis of a salutaridine derivative, see: Wiegand, S.; Sch€afer, H. J.
Tetrahedron 1995, 51, 5341.
(9) For recent related Pd- or Ir-catalyzed allylic alkylations, see: (a)
Nemoto, T.; Ishige, Y.; Yoshida, M.; Kohno, Y.; Kanematsu, M.;
Hamada, Y. Org. Lett. 2010, 12, 5020. (b) Wu, Q.-F.; Liu, W.-B.; Zhuo,
C.-X.; Rong, Z.-Q.; Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011,
50, 4455.
(10) For additional examples of transition-metal-catalyzed dearo-
matization procedures, see: (a) Kimura, M.; Futamata, M.; Mukai, R.;
Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (b) Trost, B. M.;
Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314. (c) Kagawa, N.;
Malerich, J. P.; Rawal, V. H. Org. Lett. 2008, 10, 2381. (d) García-
Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem. Soc. 2009,
131, 6676. (e) Bedford, R. B.; Butts, C. P.; Haddow, M. F.; Osborne,
R.; Sankey, R. F. Chem. Commun. 2009, 4832. (f) Wu, Q.-F.; He, H.; Liu,
W.-B.; You, S.-L. J. Am. Chem. Soc. 2010, 132, 11418. (g) Bedford, R. B.;
Fey, N.; Haddow, M. F.; Sankey, R. F. Chem. Commun. 2011, 47, 3649.
Also see refs 8 and 9.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
characterization and spectral data for all compounds. This material
(11) For a review of the synthesis of spirocyclics, see: Kotha, S.; Deb,
A. C.; Lahiri, K.; Manivanna, E. Synthesis 2009, 165.
(12) For the use of chiral hypervalent iodine reagents to mediate the
oxidative asymmetric dearomatization of phenols, see: (a) Up to 86% ee:
Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.;
Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008,
’ AUTHOR INFORMATION
Corresponding Author
9284
dx.doi.org/10.1021/ja203644q |J. Am. Chem. Soc. 2011, 133, 9282–9285