Table 2. Optimization of Direct Arylation on Oxazoline 8aa
Scheme 4. Metal-Free Direct Benzylation and Alkylation of a
C(sp3)ꢀH Bond
entry
[Pd]
L (mol %)
base (equiv)
yield (%)
1
2
3
4
5
6
7
8
9
Pd(OAc)2
ꢀ
LiOt-Bu (2.0)
LiOt-Bu (2.0)
11
23
37
35
24
53
18
31
70
of transition metal catalysts at the activated benzhydryl-
type position (Scheme 4).
Pd(OAc)2 PCy3 (10)
Pd(OAc)2 rac-BINAP (5.0) LiOt-Bu (2.0)
The well-defined complex 1 was not limited to direct
benzylations, but allowed for efficient CꢀH bond aryla-
tions11 on oxazole 2a as well (Scheme 5). Notably, the
catalysts broad substrate scope included sterically demand-
ing ortho-substituted electrophiles as well as heteroaryl
bromides 6.
Pd(OAc)2 Xantphos (5.0)
Pd(OAc)2 dppf (5.0)
Pd(OAc)2 dppp (5.0)
LiOt-Bu (2.0)
LiOt-Bu (2.0)
LiOt-Bu (2.0)
KOt-Bu (2.5)
NaOt-Bu (2.5)
LiOt-Bu (2.5)
1
1
1
ꢀ
ꢀ
ꢀ
a Reaction conditions: 8a (0.5 mmol), 6a (1.0 mmol), [Pd] (5.0
mol %), base, DMA, 100 °C, 14ꢀ20 h; isolated yields.
Scheme 5. Scope of Direct Arylations
ligands in the direct arylation of oxazoline 8a (Table 2).
Interestingly, complex 1 outperformed palladium com-
plexes derived from representative mono- or bidentate
phosphine ligands (entries 1ꢀ6), including Xantphos
(entry 4), which was previously employed for palladium-
catalyzed direct alkynylations.8 Among a variety of bases,
LiOt-Bu provided most satisfactory results, whereas the
use of K2CO3, Cs2CO3, Rb2CO3 or K3PO4 gave no desired
product 9a.13 Webelievethatthe remarkably high catalytic
activity exerted by complex 1 is due to the bidentate,
(11) For recent progress in transition-metal-catalyzed direct aryla-
tions of heteroarenes, see: (a) Kirchberg, S.; Tani, S.; Ueda, K.;
Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50,
2387–2391. (b) Wagner, A. M.; Sanford, M. S. Org. Lett. 2011, 13, 288–
291. (c) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 3308–3311.
(d) Nadres, E. T.; Lazareva, A.; Daugulis, O. J. Org. Chem. 2011, 76,
471–483. (e) Ackermann, L.; Fenner, S. Chem. Commun. 2011, 47, 430–
432. (f) Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. Angew.
Chem., Int. Ed. 2010, 49, 8946–8949. (g) Seiple, I. B.; Su, S.; Rodriguez,
R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am.
Chem. Soc. 2010, 132, 13194–13196. (h) Roy, D.; Mom, S.; Beauperin,
M.; Doucet, H.; Hierso, J.-C. Angew. Chem., Int. Ed. 2010, 49, 6650–
6654. (i) Yagoubi, M.; Cruz, A. C. F.; Nichols, P. L.; Elliott, R. L.;
Willis, M. C. Angew. Chem., Int. Ed. 2010, 49, 7958–7962. (j) Hachiya,
H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2010, 49,
2202–2205. (k) Ackermann, L.; Vicente, R. Org. Lett. 2009, 11, 4922–
4925. (l) Kim, M.; Kwak, J.; Chang, S. Angew. Chem., Int. Ed. 2009, 48,
8935–8939. (m) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-
Laperle, M.; Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.;
Lecavallier, M.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 3291–3306. (n)
Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009,
48, 201–204. (o) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.;
Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1473–1476. (p) Turner, G. L.;
Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46, 7996–
8000. (q) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404–
12405 and references cited therein.
In recent years, significant progress was made in direct
arylations of heteroarenes.5,11 On the contrary, a palla-
dium-catalyzed12 CꢀH bond arylation of nonaromatic
oxazolines was as of yet not reported, despite of their
practical importance as key intermediates in synthetic
organic chemistry.9 Consequently, we tested different
(10) Direct benzylations under basic reaction conditions were only
ꢀ
recently developed. [Ru]: (a) Ackermann, L.; Novak, P. Org. Lett. 2009,
ꢀ
11, 4966–4969. (b) Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N.
Angew. Chem., Int. Ed. 2009, 48, 6045–6048. (c) Ackermann, L.;
Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875–1877. [Pd]: (d)
Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160–4163. (e) Verrier, C.;
Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647–650. (f) Zhang,
Y.-H.; Shi, B.-F.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 6097–6100.
(12) For an example of an elegant rhodium-catalyzed CꢀH bond
functionalization, see: (a) Lewis, J. C.; Wiedemann, S. H.; Bergman,
R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35–38. (b) Lewis, J. C.; Berman,
A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493–
2500.
€
(g) Ackermann, L.; Barfusser, S.; Pospech, J. Org. Lett. 2010, 12, 724–
726. (h) Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12,
1360–1363. (i) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Chem.;Eur. J.
2010, 16, 12307–12311. (j) Shabashov, D.; Daugulis, O. J. Am. Chem.
Soc. 2010, 132, 3965–3972. A review: (k) Ackermann, L. Chem.
Commun. 2010, 46, 4866–4877.
(13) This result is indicative of a reaction manifold involving an initial
in situ deprotonation with the base LiOt-Bu.
3084
Org. Lett., Vol. 13, No. 12, 2011