aldehydes has been established almost exclusively for
aromatic aldehydes.8
In the course of our continued investigation of the
synthesis12aꢀd and applications16 of diaryliodonium salts,
we have examined the arylation of carboxylic acids. Here-
in, we present our preliminary results on this reaction,
which proved to be tolerant of steric hindrance as well as a
range of functionalities.
The early reports on this transformation utilized excess
sodium benzoate and diaryliodonium halides or hydrogen
sulfates in refluxing protic solvents.10 These conditions are
potentially problematic for a number of functional groups,
e.g., enolizable carbonyls. We sought to develop a general
synthesis of aryl esters using aprotic solvents and diarylio-
donium triflates or tetrafluoroborates, as these conditions
allowed for lower reaction temperatures in the efficient
arylation of phenoxides.16b
Metal-free oxidative esterifications can be performed
with hypervalent iodine reagents.9 The reaction of diary-
liodonium salts with sodium carboxylates was briefly
reported in the 1950s,10 and one diaryliodonium salt has
also been utilized as benzyne precursor in the synthesis of
phenyl esters.11
The preparation of diaryliodonium salts has recently
been facilitated by the development of efficient one-pot
routes to these hypervalent iodine compounds.12 They
can be utilized as electrophilic arylating agents both
in metal-catalyzed13,14 and metal-free13,15 protocols
and can often replace organometallic reagents with less
benign profiles.
The conditions were optimized using benzoic acid (1a)
and diphenyliodonium triflate (2a) asmodel substrates. An
initial screening of solvents with several bases revealed that
the conversion to phenyl benzoate (3a) was much higher
in toluene than in THF, acetonitrile, or DMF. Further
studies were thus carried out in toluene, and the results are
summarized in Table 1.
(6) (a) Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. J. Mol. Catal.
A: Chem. 1996, 111, 25–31. (b) Watson, D. A.; Fan, X.; Buchwald, S. L.
J. Org. Chem. 2008, 73, 7096–7101. (c) Wu, X.-F.; Neumann, H.; Beller,
M. ChemCatChem 2010, 2, 509–513. (d) For a coupling with diarylio-
donium salts, see: Kang, S.-K.; Yamaguchi, T.; Ho, P.-S.; Kim, W.-Y.;
Ryu, H.-C. J. Chem. Soc., Perkin Trans. 1 1998, 841–842.
(7) (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147–
1169. For selected examples with hypervalent iodine, see:(b) Kalyani,
D.; Sanford, M. S. Org. Lett. 2005, 7, 4149–4152. (c) Gou, F.-R.; Wang,
X.-C.; Huo, P.-F.; Bi, H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett. 2009,
11, 5726–5729. (d) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan,
V. J. Am. Chem. Soc. 2010, 132, 8270–8272.
Table 1. Optimization of the Model Reactiona
(8) (a) Qin, C.; Wu, H.; Chen, J.; Liu, M.; Cheng, J.; Su, W.; Ding, J.
Org. Lett. 2008, 10, 1537–1540. (b) Rosa, J. N.; Reddy, R. S.; Candeias,
N. R.; Cal, P. M. S. D.; Gois, P. M. P. Org. Lett. 2010, 12, 2686–2689.
(9) (a) For a review, see: Merritt, E. A.; Olofsson, B. Synthesis 2011,
517–538. For catalytic systems (no aryl esters), see: (b) Ochiai, M.;
Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem.
Soc. 2005, 127, 12244–12245. (c) Dohi, T.; Maruyama, A.; Yoshimura,
M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44,
6193–6196. (d) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew.
Chem. Int. Ed. 2011, 50, 5331ꢀ5334.
entry
base
equiv of base tempb (°C) time (h) yieldc (%)
(10) (a) Beringer, F. M.; Brierley, A.; Drexler, M.; Gindler, E. M.;
Lumpkin, C. C. J. Am. Chem. Soc. 1953, 75, 2708–2712 (arylation of
sodium benzoate, 5 equiv, with three different salts in 40ꢀ85% yield). (b)
Nesmeyanov, A. N.; Makarova, L. G.; Tolstaya, T. P. Tetrahedron 1957,
1, 145–157 (no details given). (c) Fuson, R. C.; Albright, R. L. J. Am.
Chem. Soc. 1959, 81, 487–490 (Cu-catalyzed synthesis of 2-acetoxy-20-
iodobiphenyl).
1
2
NaOH
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
0.55
1.1
1.1
0.55
0.55
130
130
130
130
130
130
130
130
130
130
100
70
1
1
<5
<5
78
79
85
89
95
87
92
95
83
<5
93
63
NaO-t-Bu
NaO-t-Bu
KOH
3
16
1
4
5
K3PO4
1
(11) (a) Xue, J.; Huang, X. Synth. Commun. 2007, 37, 2179–2185. For
the use of other aryne precursors in esterification, see: (b) Liu, Z.;
Larock, R. C. Org. Lett. 2004, 6, 99–102. (c) Liu, Z.; Larock, R. C.
J. Org. Chem. 2006, 71, 3198–3209.
(12) (a) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007,
349, 2610–2618. (b) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem.
2008, 73, 4602–4607. (c) Zhu, M.; Jalalian, N.; Olofsson, B. Synlett 2008,
592–596. (d) Merritt, E. A.; Malmgren, J.; Klinke, F. J.; Olofsson, B.
Synlett 2009, 2277–2280. (e) Hossain, M. D.; Ikegami, Y.; Kitamura, T.
J. Org. Chem. 2006, 71, 9903–9905. (f) Hossain, M. D.; Kitamura, T.
Bull. Chem. Soc. Jpn. 2007, 80, 2213–2219.
6
K2CO3
2
7
KOt-Bu
KOt-Bu
Cs2CO3
Cs2CO3
KOt-Bu
KOt-Bu
Cs2CO3
Cs2CO3
1
8d
9
1
0.5
10
11
12
13
14
1
4
16
2
100
70
16
(13) For a review, see: Merritt, E. A.; Olofsson, B. Angew. Chem. Int.
Ed. 2009, 48, 9052–9070.
a Base and benzoic acid (1.1 equiv) were mixed in toluene (3 mL) at rt
before addition of 2a (0.50 mmol) and heating to the tabulated tem-
perature. b Oil bath temperature. c Isolated yield. d Toluene not dried.
(14) (a) Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.;
Gaunt, M. J. Angew. Chem. Int. Ed. 2011, 50, 458–462. (b) Duong, H. A.;
Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem.
Int. Ed. 2011, 50, 463–466. (c) Wagner, A. M.; Sanford, M. S. Org. Lett.
2011, 13, 288–291. (d) Allen, A. E.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2011, 133, 4260–4263. (e) Xiao, B.; Fu, Y.; Xu, J.;
Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468–469.
(15) (a) Kita, Y.; Morimoto, K.; Ito, M.; Ogawa, C.; Goto, A.; Dohi,
T. J. Am. Chem. Soc. 2009, 131, 1668–1669. (b) Dohi, T.; Ito, M.;
Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Angew. Chem. Int.
Ed. 2010, 49, 3334–3337. (c) Morimoto, K.; Yamaoka, N.; Ogawa, C.;
Nakae, T.; Fujioka, H.; Dohi, T.; Kita, Y. Org. Lett. 2010, 12, 3804–
3807. (d) Ackermann, L.; Dell’Acqua, M.; Fenner, S.; Vicente, R.;
Sandmann, R. Org. Lett. 2011, 13, 2358–2360.
The rate of the reaction shows strong dependence on
the cation of the base: sodium bases effected almost no con-
version to 3a in 1 h at reflux (entries 1 and 2), while potassium
and cesium bases resulted in good yields (entries 4ꢀ9).
Cesium carbonate proved most efficient, as 0.55 equiv of
this diprotic base was sufficient to obtain 3a in high yield
(entry 10), but the price difference between Cs2CO3
and KOt-Bu does not justify the use of this base in general.
The reaction was slow or absent at lower temperatures,
(16) (a) Norrby, P.-O.; Petersen, T. B.; Bielawski, M.; Olofsson, B.
Chem.;Eur. J. 2010, 16, 8251–8254. (b) Jalalian, N.; Ishikawa, E. E.;
Silva, L. F.; Olofsson, B. Org. Lett. 2011, 13, 1552–1555.
Org. Lett., Vol. 13, No. 13, 2011
3463