Organometallics
ARTICLE
1,3,5-Tri(4-tert-butylphenyl)-2,4-diazapenta-1,4-diene. The reac-
tion was performed with 145 mg (766 μmol) of 4-tert-butylbenzyl azide
in dioxane. After removal of the solvent, the residue was dissolved in
EtOH (9 mL). Brine (2 mL) was then added dropwise to precipitate the
product followed by H2O (1 mL). The product was isolated by filtration,
washed with water (12 mL), and dried in vacuo to give an off-white solid
(72 mg, 61%). 1H NMR (400 MHz, CDCl3): δ 1.31 (s, 9 H, t-Bu), 1.35
(s, 18H, t-Bu), 5.97 (s, 1H, CH), 7.37À7.39 (m, 2H, Ar), 7.43À7.47 (m,
6H, Ar), 7.80À7.82 (m, 4H, Ar), 8.57 (s, 2H, NCH). 13C NMR (400
MHz, CDCl3): δ 31.22, 31.35, 34.49, 34.93 (t-Bu), 92.61 (CH), 125.39,
125.49, 126.81, 128.49, 133.50, 139.10, 150.48, 154.37 (CÀAr), 160.20
(NCH). Anal. Calcd (%) for C33H42N2: C 84.93, H 9.07, N 6.00. Found:
C 84.64, H 9.37, N 5.96.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray analysis data in cif for-
b
mat. This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: kay.severin@epfl.ch.
’ ACKNOWLEDGMENT
1,3,5-Tri(3,5-dimethylphenyl)-2,4-diazapenta-1,4-diene. The reac-
tion was performed with 188 mg (980 μmol) of 3,5-dimethylbenzyl
azide in dioxane. After removal of the solvent, the residue was suspended
in EtOH (9 mL). Brine (3 mL) was then added dropwise to precipitate
the product followed by H2O (4 mL). The product was isolated by
filtration, washed with water (12 mL) and i-PrOH (6 mL), and dried in
vacuo to give a white solid (77 mg, 62%). 1H NMR (400 MHz, CDCl3):
δ 2.33 (s, 6H, CH3), 2.37 (s, 12H, CH3), 5.88 (s, 1H, CH), 6.95 (s, 1H,
Ar), 7.10 (s, 2H, Ar), 7.13 (s, 2H, Ar), 7.51 (s, 4H, Ar), 8.52 (s, 2H,
NCH). 13C NMR (400 MHz, CDCl3): δ 21.15, 21.41 (CH3), 93.17
(CH), 125.03, 126.56, 129.47, 132.69, 136.06, 138.03, 138.11, 141.70
(CÀAr), 160.82 (NCH). Anal. Calcd (%) for C27H30N2: C, 84.77; H,
7.90; N, 7.32. Found: C, 84.64; H, 7.94; N, 7.42.
1,3,5-Tri(4-methylbenzoate)-2,4-diazapenta-1,4-diene. The reac-
tion was performed with 177 mg (922 μmol) of methyl(4-azido-
methyl)benzoate in THF. After removal of the solvent, the residue
was dissolved in EtOH (9 mL). Brine (5 mL) was then added dropwise
to precipitate the product followed by H2O (15 mL). The product was
isolated by filtration, washed with water (9 mL) and i-PrOH (4 mL), and
dried in vacuo to give an off-white solid (90 mg, 62%). 1H NMR (400
MHz, CDCl3): δ 3.92 (s, 3H, CH3), 3.95 (s, 6H, CH3), 6.09 (s, 1H,
CH), 7.61 (d, 2H, J = 8.28 Hz, Ar), 7.94 (d, 4H, J = 8.40 Hz, Ar), 8.08 (d,
2H, J = 8.36 Hz, Ar), 8.12 (d, 4H, J = 8.32 Hz, Ar), 8.64 (s, 2H, NCH).
13C NMR (400 MHz, CDCl3): δ 52.15, 52.33 (CH3), 91.84 (CH),
127.31, 128.62, 129.90, 130.04, 132.44, 139.47, 145.85 (CÀAr), 160.51
(NCH), 166.53, 166.80 (CO). Anal. Calcd (%) for C27H24N2O6: C,
68.63; H, 5.12; N, 5.93. Found: C, 68.88; H, 5.28; N, 5.99.
1,3,5-Trinaphthyl-2,4-diazapenta-1,4-diene. The reaction was per-
formed with 152 mg (830 μmol) of 2-azidoethylnaphthalene in dioxane.
After removal of the solvent, the residue was suspended in EtOH
(12 mL). Water (10 mL) was then added dropwise to precipitate the
product. The product was isolated by filtration, washed with water
(10 mL) and EtOH (6 mL), and dried in vacuo to give a light brown solid
(82 mg, 66%). The product has already been prepared, but no
characterization was reported in the literature.12 1H NMR (400 MHz,
CDCl3): δ 6.30 (s, 1H, CH), 7.48À7.58 (m, 6H, Ar), 7.74À7.76 (m,
1H, Ar), 7.84À7.94 (m, 9H, Ar), 8.07 (s, 1H, Ar), 8.20À8.23 (m, 4H,
Ar), 8.86 (s, 2H, NCH). 13C NMR (400 MHz, CDCl3): δ 92.85 (CH),
124.26, 125.50, 126.00, 126.07, 126.15, 126.49, 127.34, 127.69, 127.90,
128.22, 128.44, 128.46, 128.73, 130.87, 133.08, 133.18, 133.46, 133.74,
134.95, 139.27 (CÀAr), 161.09 (NCH). Anal. Calcd (%) for C33H24N2:
C, 88.36; H, 5.39; N, 6.25. Found: C, 88.06; H, 5.42; N, 6.49.
General Procedure for the Catalytic Conversion of Azides
into Aldehydes. A stock solution of the catalyst was prepared by
dissolving [Cp∧RuCl2]2 (20 mg, 45 μmol) in a mixture of acetonitrile
(500 μL) and water (500 μL) at 75 °C for 3 h ([Ru] = 45 mM). An aliquot
of the catalyst stock solution (100 μL) was added to a solution of the
respective benzylic azide in a mixture of acetonitrile and water (0.8 mL,
50:1) (final conc: [azide] = 100 mM; [Ru] = 5 mmol, [H2O] = 4.0 M). The
reaction was stirred at 75 °C. After 5À8 h (Table 4), the yield of the
aldehyde was determined by GC-MS using mesitylene as internal standard.
This work was supported by the Swiss National Science
Foundation and by the EPFL. We thank Marjorie Sonnay and
Laurent Joye for their help with synthetic work.
’ REFERENCES
(1) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127,
15998–15999.
(2) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952–3015.
(3) (a) Hou, D.-R.; Kuan, T.-C.; Li, Y.-K.; Lee, R.; Huang, K.-W.
Tetrahedron 2010, 66, 9415–9420. (b) Boren, B. C.; Narayan, S.;
Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V.
J. Am. Chem. Soc. 2008, 130, 8923–8930. (c) Rasmussen, L. K.; Boren,
B. C.; Fokin, V. V. Org. Lett. 2007, 9, 5337–5339. (d) Majireck, M. M.;
Weinreb, S. M. J. Org. Chem. 2006, 71, 8680–8683.
(4) Johansson, J. R.; Lincoln, P.; Nordꢀen, B.; Kann, N. J. Org. Chem.
2011, 76, 2355–2359.
(5) For selected examples see: (a) Montagu, A.; Roy, V.; Balzarini, J.;
Snoeck, R.; Andrei, G.; Agrofoglio, L. A. Eur. J. Med. Chem. 2011,
46, 778–786. (b) Tietze, D.; Tischler, M.; Voigt, S.; Imhof, D.;
Ohlenschl€ager, O.; G€orlach, M.; Buntkowsky, G. Chem.—Eur. J. 2010,
16, 7572–7578. (c) Moumnꢀe, R.; Larue, V.; Seijo, B.; Lecourt, T.;
Micouin, L.; Tisnꢀe, C. Org. Biomol. Chem. 2010, 8, 1154–1159.
(d) Takasu, K.; Azuma, T.; Takemoto, Y. Tetrahedron Lett. 2010,
51, 2737–2740. (e) Van Poecke, S.; Negri, A.; Gago, F.; Van Daele, I.;
Solaroli, N.; Karlsson, A.; Balzarini, J.; Van Calenbergh, S. J. Med. Chem.
2010, 53, 2902–2912. (f) Kee, J.-M.; Villani, B.; Carpenter, L. R.; Muir,
T. W. J. Am. Chem. Soc. 2010, 132, 14327–14329. (g) Odlo, K.; Fournier-
Dit-Chabert, J.; Ducki, S.; Gani, O. A. B. S. M.; Sylte, I.; Hansen, T. V.
Bioorg. Med. Chem. 2010, 18, 6874–6885. (h) Chemama, M.; Fonvielle,
M.; Arthur, M.; Valꢀery, J.-M.; Etheve-Quelquejeu, M. Chem.—Eur.
J. 2009, 15, 1929–1938. (i) Nulwala, H.; Takizawa, K.; Odukale, A.;
Khan, A.; Thibault, R. J.; Taft, B. R.; Lipshutz, B. H.; Hawker, C. J.
Macromolecules 2009, 42, 6068–6074. (j) Oppilliart, S.; Mousseau, G.;
Zhang, L.; Jia, G.; Thuꢀery, P.; Rousseau, B.; Cintrat, J.-C. Tetrahedron
2007, 63, 8094–8098. (k) Tam, A.; Arnold, U.; Soellner, M. B.; Raines,
R. T. J. Am. Chem. Soc. 2007, 129, 12670–12671.
(6) (a) Dutta, B.; Solari, E.; Gauthier, S.; Scopelliti, R.; Severin, K.
Organometallics 2007, 26, 4791–4799. (b) Gauthier, S.; Solari, E.; Dutta,
B.; Scopelliti, R.; Severin, K. Chem. Commun. 2007, 1837–1839.
(7) (a) Dutta, B.; Curchod, B. F. E.; Campomanes, P.; Solari, E.;
Scopelliti, R.; Rothlisberger, U.; Severin, K. Chem.—Eur. J. 2010,
16, 8400–8409. (b) Dutta, B.; Scopelliti, R.; Severin, K. Organometallics
2008, 27, 423–429. (c) Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.;
Severin, K. Organometallics 2008, 27, 1355–1357.
(8) Broggi, J.; Díez-Gonzꢀalez, S.; Petersen, J. L.; Berteina-Raboin, S.;
Nolan, S. P.; Agrofoglio, L. A. Synthesis 2008, 1, 141–148.
(9) Chou, C.-H.; Chu, L.-T.; Chiu, S.-J.; Lee, C.-F.; She, Y.-T.
Tetrahedron 2004, 60, 6581–6584.
(10) (a) Abbiati, G.; Contini, A.; Nava, D.; Rossi, E. Tetrahedron
2009, 65, 4664–4670. (b) Hunter, D. H.; Sim, S. K. Can. J. Chem.
1972, 50, 669–677.
3417
dx.doi.org/10.1021/om200295c |Organometallics 2011, 30, 3412–3418