1038
S. Qin et al. / Inorganic Chemistry Communications 14 (2011) 1036–1038
metallacrown-6 with ligands derived from 3-hydroxy-2-naphthalenecarbohy-
drazide, Eur. J. Inorg. Chem. 2006 (2006) 4866–4871.
[12] L.F. Jin, F.P. Xiao, G.Z. Cheng, Z.P. Ji, Synthesis, crystal structure and bioactivity of a
novel 18-metallacrown-6 [Mn6(H2O)6(anshz)6]·10DMF, J. Organomet. Chem. 691
(2006) 2909–2914.
[13] L.F. Jin, F.P. Xiao, G.Z. Cheng, Z.P. Ji, Synthesis, crystal structure and bioactivity of a
novel 18-metallacrown-6 [Mn6(H2O)6(abshz)6]·36H2O, Inorg. Chem. Commun. 9
(2006) 758–760.
[14] M. Park, R.P. John, D. Moon, K. Lee, G.H. Kim, M.S. Lah, Two octanuclear gallium
metallamacrocycles of topologically different connectivities, Dalton Trans. (2007)
5412–5418.
[15] F.P. Xiao, L.F. Jin, W. Luo, G.Z. Cheng, Z.P. Ji, Synthesis, characterization and
bioactivity of a novel 18-metallacrown-6: [Mn(pcshz)(CH3OH)]6·4CH3OH·4H2O,
Inorg. Chim. Acta 360 (2007) 3341–3346.
[16] K. Lee, R.P. John, M. Park, D. Moon, H.C. Ri, G.H. Kim, M.S. Lah, Steric control of the
nuclearity of metallamacrocycles: formation of a hexanuclear gallium metalla-
diazamacrocycle and
a hexadecanuclear manganese metalladiazamacrocycle,
Dalton Trans. (2008) 131–136.
[17] Z.J. Chen, 24-Membered octanuclear manganese metalladiazamacrocycle, Inorg.
Chem. Commun. 12 (2009) 636–638.
[18] T.P. Shu, Z.J. Chen, H.M. Feng, J.L. Wen, K.W. Lei, Novel 18-membered hexanuclear
metallamacrocycle: synthesis, crystal structure, and magnetic properties, Inorg.
Chem. Commun. 12 (2009) 672–674.
Fig. 4. Temperature dependence of χM and χMT for 1. Inset: temperature dependence of
χM for 1, representing the best fit of the Curie–Weiss law χM =C/(T−θ).
[19] Y.T. Chen, J.M. Dou, D.C. Li, S.N. Wang, A mixed-type of azametallacrown containing
[Mn6(pnhz)6(DMF)4(H2O)2] and [Mn6(pnhz)6(DMF)2(H2O)4] constructed by a flexible
pentadentate ligand, Inorg. Chem. Commun. 13 (2010) 167–170.
In conclusion, an unexpectedly coordination polymer of trivalent
octahedral metal ion with N-acyl-salicylhydrazide ligand, [Fe(HL)Cl
(CH3OH)]n·nCH3OH, was prepared by the reaction of N-dehydroa-
bietoyl-salicylhydrazide with FeCl3·6H2O. The compound presents a
1D chain structure which is formed by the linkage of the ligand
binding in tridentate-monodentate/back-to-back mode. The 1D chain
is further extended to 2D supramolecular network by intermolecular
O–H···Cl and O–H···O hydrogen bonds. Antiferromagnetic coupling
interaction between the Fe(III) ions of the compound is observed.
[20] W.L. Liu, K.J. Lee, M. Park, R.P. John, D. Moon, Y. Zou, X.F. Liu, H.C. Ri, G.H. Kim, M.S.
Lah, Novel 48-membered hexadecanuclear and 60-membered icosanuclear
manganese metallamacrocycles, Inorg. Chem. 47 (2008) 8807–8812.
[21] S.X. Liu, S. Lin, B.Z. Lin, C.C. Lin, J.Q. Huang, [30]metallacrown-10 compounds: [Mn
(C14H9N2O3)(CH3OH)]10·5CH2Cl2·16CH3OH·H2O and [Fe(C14H9N2O3)(CH3OH)]
10·3CH2Cl2·12.5CH3OH·5H2O, Angew. Chem. Int. Ed. 40 (2001) 1084–1087.
[22] S. Lin, S.X. Liu, Z. Chen, B.Z. Lin, S. Gao, Synthesis, structure, and magnetism of a
ferric 24-azametallacrown-8 complex, Inorg. Chem. 43 (2004) 2222–2224.
[23] R.P. John, K. Lee, B.J. Kim, B.J. Suh, H. Rhee, M.S. Lah, Modulation of the ring size
and nuclearity of metallamacrocycles via the steric effect of ligands: preparation
and characterization of 18-membered hexanuclear, 24-membered octanuclear,
and 30-membered decanuclear manganese metalladiazamacrocycles with α- and
β-Branched N-Acylsalicylhydrazides, Inorg. Chem. 44 (2005) 7109–7121.
[24] R.P. John, J. Park, D. Moon, K. Lee, M.S. Lah, Encapsulation of a guest molecule in a
strained form: an extended 36-membered dodecanuclear manganese metalla-
macrocycle that accommodates a cyclooctane in the S4 symmetry conformation,
Chem. Commun. (2006) 3699–3701.
Acknowledgements
The authors thank the financial support by National Natural Science
Foundation of China (No. 20971029) and Guangxi Natural Science
Foundation (No. 2010GXNSFD013018 and 2010GXNSFF013001).
[25] R.P. John, M. Park, D. Moon, K. Lee, S. Hong, Y. Zou, C.S. Hong, M.S. Lah, A chiral
pentadecanuclear metallamacrocycle with a sextuple twisted Möbius topology, J.
Am. Chem. Soc. 129 (2007) 14142–14143.
Appendix A. Supplementary material
[26] X.F. Liu, W.L. Liu, K. Lee, M. Park, H.C. Ri, G.H. Kim, M.S. Lah, A dodecanuclear
metallamacrocycle having a multidentate bridging ligand in two different binding
modes, Dalton Trans. (2008) 6579–6583.
CCDC 806940 contains the supplementary crystallographic data for
this paper. These data canbeobtained free of charge from The Cambridge
Supplementary data associated with this article can be found, in the
online version, at doi:10.1016/j.inoche.2011.03.066.
[27] W. Luo, X.T. Wang, X.G. Meng, G.Z. Cheng, Z.P. Ji, Metal coordination architectures of
N-acyl-salicylhydrazides: the effect of metal ions and steric repulsion of ligands to
their structures of polynuclear metal complexes, Polyhedron 28 (2009) 300–306.
[28] Synthesis of H3L: A sample of dehydroabieticacyl chloride (4.8 g, 15 mmol) was
added dropwise to 100 mL of chloroform at 0 °C containing 1 mL (7 mmol) of
triethylamine. After stirring for 30 min, the solution was slowly warmed to room
temperature. Then, salicylhydrazide (3.4 g, 22 mmol) was added and the resulting
solution was further stirred for 24 h. A yellow precipitate of H3L was isolated by
filtration and recrystallized from ethanol and H2O solutions (71%, Yield). Anal. Calc.
for C27H34N2O3 (%): C, 74.62; H, 7.89; N, 6.45. Found: C, 74.91; H, 8.04; N, 6.27. IR data
(KBrpellets, cm–1): 3278(m), 2957(s), 2930(s), 1637(s), 1599(s), 1520(s), 1495(m),
1384(m), 1360(m),1250(m), 1210(m), 826(m), 754(m).
References
[1] G. Mezei, C.M. Zaleski, V.L. Pecoraro, Structural and functional evolution of
metallacrowns, Chem. Rev. 107 (2007) 4933–5003.
[2] E. Zangrando, M. Casanova, E. Alessio, Trinuclear metallacycles: metallatriangles
and much more, Chem. Rev. 108 (2008) 4979–5013.
[29] Synthesis of 1: a methanol solution (8 mL) of FeCl3·6H2O (0.0270 g, 0.1 mmol) was
slowly added to a methanol solution (5 mL) of H3L (0.0435 g, 0.1 mmol). The resulting
solution was further stirred at ambient temperature for 3 h and then filtered. The filtrate
was allowed to evaporate at room temperature, giving dark brown block crystals of 1
suitable for single-crystal X-ray diffraction after two weeks (55% Yield based on Fe).
Anal. Calc. for C29H40ClFeN2O5 (%): C, 59.25; H, 6.86; N, 4.76. Found: C, 58.98; H, 6.97; N,
4.57. IR data (KBr pellets, cm–1): 3383(m), 2950(m), 1598(m), 1554(m), 1485(s), 1433
(s), 1408(m), 1245(m), 1108(m), 757(m).
[3] Y.F. Han, W.G. Jia, W.B. Yu, G.X. Jin, Stepwise formation of organometallic
macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units,
Chem. Soc. Rev. 38 (2009) 3419–3434.
[4] B. Kwak, H. Rhee, S. Park, M.S. Lah, Synthesis and characterization of [MnIII
6
(N-formylsalicylhydrazidate)6(MeOH)6]: a new type of macrocyclic hexanuclear
manganese cluster, Inorg. Chem. 37 (1998) 3599–3602.
[5] R.P. John, D. Moon, M.S. Lah, Metalladiazamacrocycles: metallamacrocycles as
potential supramolecular host system for small organic guest molecules and
supramolecular building blocks for metal organic frameworks, Supramol. Chem.
19 (2007) 295–308.
[6] M.J. Prakash, M.S. Lah, Metal-organic macrocycles, metal-organic polyhedra and
metal-organic frameworks, Chem. Commun. (2009) 3326–3341.
[7] S. Lin, S.X. Liu, J.Q. Huang, C.C. Lin, Four novel nanometer-sized cobalt
azametallacrown complexes, J. Chem. Soc., Dalton Trans. (2002) 1595–1601.
[8] R.P. John, K. Lee, M.S. Lah, Novel 36-membered dodecanuclear manganese
metalladiazamacrocycle, Chem. Commun. (2004) 2660–2661.
[9] B. Li, D.D. Han, G.Z. Cheng, Z.P. Ji, Synthesis, spectra and crystalstructureofa novel 18-
metallacrown-6 [Mn6(4-ohashz)6(CH3OH)6]·12CH3OH, Inorg. Chem. Commun.
8 (2005) 216–218.
[30] The single-crystal X-ray crystallography diffraction study on 1 was performed at
187(2) K using a Bruker CCD Area Detector with graphite-monochromated Mo-
Kα radiation (λ=0.71073 Å). The structure was solved by direct methods using
the SHELXS-97 program package and refined against F2 by full-matrix least-
squares methods with SHELXL-97. Crystal data for 1: Mr =586.92, triclinic, space
group P1, a=6.2641(8) Å, b=7.7728(9) Å, c=15.6593(18) Å, α=82.270(2)°,
β=88.132(2)°, γ=73.884(2)°, V=725.82(15) Å3, Z=1, Dc =1.345 g cm−3
,
μ=0.651 mm−1, 4487 measured data, 3746 unique, Rint =0.0172. R1 =0.0309 for
observations of I≥2σ(I), wR2 =0.0872 for all data, GOF=1.039.
[31] S. Lin, S.X. Liu, B.Z. Lin, Synthesis, crystal structure and magnetic properties of a novel
iron(III) 18-azametallacrown-6 compound, Inorg. Chim. Acta 328 (2002) 69–73.
[32] L.F. Jin, H. Yu, S.X. Wu, F.P. Xiao, Iron(III) coordination induced novel 18-
metallacrown-6 complex: esterification and isolation of the ligand, Dalton Trans.
(2009) 197–201.
[10] D. Moon, K. Lee, R.P. John, G.H. Kim, B.J. Suh, M.S. Lah, Steric control of a bridging
ligand for high-nuclearity metallamacrocycle formation: a highly puckered 60-
membered icosanuclear metalladiazamacrocycle, Inorg. Chem. 45 (2006)
7991–7993.
[11] J.M. Dou, M.L. Liu, D.C. Li, D.Q. Wang, Synthesis, characterization, and crystal
structure of two manganese metallacrowns: 30-metallacrown-10 and 18-
[33] T.P. Shu, J.L. Wen, H.M. Feng, K.W. Lei, H.Z. Liang, Synthesis, structural
characterization and magnetic properties of
a novel metallacrown [Fe6
(amshz)6(C3H7NO)6]·CH3OH, Solid State Sci. 11 (2009) 2180–2183.