J . Org. Chem. 1997, 62, 4521-4523
4521
respectively. The synthesis employed Birch reduction,10
followed by asymmetric hydroboration11 and recrystalli-
zation to 100% ee. Conversion of the optically pure diols
to the corresponding mesylates proceeds cleanly. Nu-
cleophilic substitution by Li2PPh on the chiral dimesy-
lates 3 and 4 generated the corresponding bicyclic
phosphines, which were trapped by BH3‚THF to form the
air-stable boron-protected monophosphines 5 and 6,
respectively. Deprotection with a strong acid12 produces
the desired products (7, (1R,2S,4R,5S)-(+)-2,5-dimethyl-
7-phenyl-7-phosphabicyclo[2.2.1]heptane; 8, (1R,2R,4R,5R)-
(+)-2,5-diisopropyl-7-phenyl-7-phosphabicyclo[2.2.1]-
heptane) in high yields.
Syn th eses of Novel Ch ir a l
Mon op h osp h in es,
2,5-Dia lk yl-7-p h en yl-7-p h osp h a bicyclo-
[2.2.1]h ep ta n es, a n d Th eir Ap p lica tion in
High ly En a n tioselective P d -Ca ta lyzed
Allylic Alk yla tion s
Zhaogen Chen, Qiongzhong J iang, Guoxin Zhu,
Dengming Xiao, Ping Cao, Cheng Guo, and
Xumu Zhang*
Department of Chemistry, 152 Davey Laboratory,
The Pennsylvania State University,
University Park, Pennsylvania 16802
We chose Pd-catalyzed allylic alkylation to test the
effectiveness of these new monophosphines as chiral
ligands. Although many palladium complexes of multi-
dentate phosphine and nitrogen ligands are excellent
catalysts for this reaction,13,14 palladium complexes of
simple chiral monophosphines are normally not effec-
tive.15 We were delighted to find that Pd-catalyzed allylic
Received December 16, 1996X
Design and synthesis of chiral phosphines have played
a significant role in the development of transition metal
catalyzed asymmetric reactions.1 Many excellent chiral
bidentate phosphines such as DIPAMP,2 DIOP,3 Chira-
phos,4 and BINAP5 have been developed for a variety of
catalytic reactions. Recent additions to this family of
ligands include the Duphos and BPE species of Burk and
co-workers.6 The most significant characteristics of
Duphos and BPE are (1) they contain several alkyl groups
attached to the phosphine and thus are more electron
rich than many related chiral arylphosphine ligands and
(2) the steric environment can be varied by changing the
substituents on the chiral carbon centers. Highly enan-
tioselective reactions have been reported with these
ligands.6 Despite these successes, one potential problem
is the conformational flexibility that exists in these
ligands which may limit their applicability to other types
of reactions. It is well-known that rapid interconversion
of the envelope and half-chair conformations can occur
in five-membered rings. We now report new chiral
phosphines with rigid fused bicyclic rings which do not
possess the conformational flexibility associated with the
five-membered rings present in the Duphos and BPE
ligands (Figure 1).
The rigid fused bicyclic [2.2.1] structure represents a
new motif in chiral ligand design. Analogous to Burk’s
systems, changes in the size of the R group on the ring
system can modulate the asymmetric induction and high
enantioselectivities can be achieved. Herein, we report
the syntheses of chiral monophosphines with this fused
bicyclic ring structure (Figure 2)7 and their application
in Pd-catalyzed asymmetric allylic alkylations.
The ligand synthesis depends on the availability of
enantiomerically pure cyclic 1,4-diols. Halterman8 and
Vollhardt9 have previously prepared chiral cyclopenta-
diene derivatives from the chiral diols.8,9 Halterman8 has
synthesized chiral diols 1 and 2 from the inexpensive
starting materials p-xylene and p-diisopropylbenzene,
(7) Upon completion of the work reported here, a related chiral fused
bicyclic phosphine, 2,6-dimethyl-9-phenyl-9-phosphabicyclo[3.3.1]-
nonane, was reported for Pd-catalyzed allylic alkylations (Hamada,
Y.; Seto, N. Ohmori, H.; Hatano, K. Tetrahedron Lett. 1996, 37, 7565).
Compared with this ligand, 7 and 8 are more rigid (one less methylene
group) and the chiral environment can be varied by changing the R
group. We expect that these attributes will be important for fine-tuning
activity and selectivity of phosphines like 7 and 8 in various asym-
metric catalytic reactions.
(8) (a) Chen, Z.; Halterman, R., L. Synlett 1990, 103. (b) Chen, Z.;
Eriks, K.; Halterman, R. L. Organometallics 1991, 10, 3449. (c) Chen,
Z.; Halterman, R., L. J . Am. Chem. Soc. 1992, 114, 2276. (d) Halter-
man, R. L.; Chen, Z.; Khan, M. Organometallics 1996, 15, 3957.
(9) Halterman, R. L.; Vollhardt, K. P. C.; Welker, M. E.; Blaser, D.;
Boese, R. J . Am. Chem. Soc. 1987, 109, 8105.
(10) Kwart, H.; Conley, R. A. J . Org. Chem. 1973, 38, 2011.
(11) Brown, H. C.; J adhav, P. K.; Mandal, A. K. J . Org. Chem. 1982,
47, 5074.
(12) McKinstry, L.; Livinghouse, T. Tetrahedron 1995, 51, 7655.
(13) Reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem Rev. 1996,
96, 395. (b) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339. (c) Hayashi.; T.
In Catalytic Asymmetric Synthesis; Ojima, I., Ed; VCH Publishers:
New York, 1993; p 325. (d) Frost, C. G.; Howarth, J .; Williams, J . M.
J . Tetrahedron: Asymmetry 1992, 3, 1089. (e) Consiglio, G.; Waymouth,
R. M. Chem. Rev. 1989, 89, 257.
(14) For some examples, see: (a) Trost, B. M.; Bunt, R. C. J . Am.
Chem. Soc. 1996, 118, 235. (b) Pen˜a-Cabrera, E.; Norrby, P.-O.; Sjo¨gren,
M.; Vitagliono, A.; De Felice, V.; Oslob, J .; Ishii, S.; O’Neil D.;
A° kermark, B.; Helquest, P. J . Am. Chem. Soc. 1996, 118, 4299. (c)
Barbaro, P.; Curro, A.; Hermann, J .; Nesper, R.; Pregosin, P. S.;
Salzmann, R. Organometallics 1996, 15, 1879. (d) Knu¨hl, G.; Sennhenn,
P.; Helmchen, G. J . Chem. Soc., Chem. Commun. 1995, 1845. (e) Rieck,
J .; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1995, 34, 2687. (f)
Andersson, P. G.; Harden, A.; Tanner, D.; Norrby, P. Chem. Eur. J .
1995, 1, 12. (g) von Matt, P.; Lloyd-J ones, G. L.; Minidis, A. B. E.;
Pfaltz, A.; Macko, L.; Neuburger, M.; Zehnder, M.; Ru¨egger, H.;
Pregosin, P. S. Helv. Chim. Acta 1995, 78, 265. (h) Trost, B. M.; Organ,
M. G.; O’Doherty, G. A. J . Am. Chem. Soc. 1995, 117, 9662. (i) Gamez,
P.; Dunjic, B.; Fache, F.; Lemaire, M. J . Chem. Soc., Chem. Commun.
1994, 1417. (j) Brown, J . M.; Hulmes, D. I.; Guiry, P. J . Tetrahedron
1994, 50, 4493. (k) Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.;
Landert, H.; Tijani, A. A. J . Am. Chem. Soc. 1994, 116, 4062. (l)
Hayashi, T.; Iwamura, H.; Naito, M.; Matsumoto, Y.; Uozumi, Y.; Miki,
M.; Yanagi, K. J . Am. Chem. Soc. 1994, 116, 775. (m) Trost, B. M.;
Bunt, R. C. J . Am. Chem. Soc. 1994, 116, 4089. (n) Pregosin, P. S.;
Ru¨egger, H.; Salzmann, R.; Albinati, A.; Lianza, F.; Kunz, R. W.
Organometallics 1994, 13, 83. (o) Sprinz, J .; Kiefer, Tetrahedron Lett.
1994, 35, 1523. (p) Allen, J . V.; Coote, S. J .; Dawson, G. J .; Frost, C.
G.; Martin, C. J .; Williams, J . M. J . J . Chem. Soc., Perkin Trans. 1
1993, 2065. (q) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1993, 32, 566. (r) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J . Am.
Chem. Soc. 1992, 114, 9327. (s) Trost, B. M.; Van Vranken, D. L.
Angew. Chem., Int. Ed. Engl. 1992, 31, 328. (t) Trost, B. M.; Murphy,
D. J . Organometallics 1985, 4, 1143. (u) Auburn, P. R.; Mackenzie, P.
B., Bosnich, B. J . Am. Chem. Soc. 1985, 107, 2033. (v) Trost, B. M.;
Strege, P. E. J . Am. Chem. Soc. 1977, 99, 1649.
X Abstract published in Advance ACS Abstracts, J une 1, 1997.
(1) (a) Ojima, I., Ed. Catalytic Asymmetric Synthesis; VCH: New
York, 1993. (b) Sheldon, R. A. Chirotechnology; Marcel Dekker: New
York, 1993. (c) Noyori, R. Asymmetric Catalysis In Organic Synthesis;
J ohn Wiley & Sons: New York, 1994.
(2) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106.
(3) Kagan, H. B.; Dang, T.-P. J . Am. Chem. Soc. 1972, 94, 6429.
(4) Fryzuk, M. D.; Bosnich, B. J . Am. Chem. Soc. 1977, 99, 6262.
(5) (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (b)
Noyori, R. Science 1990, 248, 1194.
(6) (a) Burk, M. J .; Feaster, J . E.; Harlow, R. L. Organometallics
1990, 9, 2653. (b) Burk, M. J . J . Am. Chem. Soc. 1991, 113, 8518. (c)
Burk, M. J .; Feaster, J . E.; Nugent, W. A.; Harlow, R. L. J . Am. Chem.
Soc. 1993, 115, 10125. (d) Burk, M. J .; Lee, J . R.; Martinez, J . P. J .
Am. Chem. Soc. 1994, 116, 10847.
(15) (a) Friad, J . C.; Aribi-Zouioueche, L. J . Organomet. Chem. 1985,
253, 282. (b) Fiaud, J . C.; Legros, J . Y. Tetrahedron Lett. 1991, 25,
5089.
S0022-3263(96)02354-7 CCC: $14.00 © 1997 American Chemical Society