2690
S. Messaoudi et al. / Tetrahedron Letters 52 (2011) 2687–2691
10. Audisio, D.; Messaoudi, S.; Brion, J.-B.; Alami, M. Eur. J. Org. Chem. 2010, 1046–
Pd2dba3 /Xantphos
N
Br
+
1051.
NaOtBu
11. (a) Audisio, D.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, A. Tetrahedron
Lett. 2007, 48, 6928–6932; (b) Messaoudi, S.; Audisio, D.; Brion, J.-D.; Alami, A.
Tetrahedron 2007, 63, 10202–10210; (c) Messaoudi, S.; Brion, J.-D.; Alami, M.
Adv. Synth. Catal. 2010, 352, 1677–1687.
N
N
N
Toluene
90 °C, 12 h
N
NH
49%
12. For
a review, see: (a) Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M.
3a
MeO
MeO
Anticancer Agents Med. Chem. 2008, 8, 761–782; (b) Le Bras, G.; Radanyi, C.;
Peyrat, J.-F.; Brion, J.-D.; Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.-M. J. Med.
Chem. 2007, 50, 6189–6200; (c) Radanyi, C.; Le Bras, G.; Messaoudi, S.; Bouclier,
C.; Peyrat, J.-F.; Brion, J.-D.; Marsaud, V.; Renoir, J.-M.; Alami, M. Bioorg. Med.
Chem. Lett. 2008, 18, 2495–2498; (d) Radanyi, C.; Le Bras, G.; Marsaud, V.;
Peyrat, J.-F.; Messaoudi, S.; Catelli, M. G.; Brion, J.-D.; Alami, M.; Renoir, J.-M.
Cancer Lett. 2008, 274, 88–94; (e) Radanyi, C.; Le Bras, G.; Bouclier, C.;
Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M.; Renoir, J.-M. Biochem.
Biophys. Res. Commun. 2009, 379, 514–518; (f) Audisio, D.; Messaoudi, S.; Ijjaali,
I.; Dubus, E.; Petitet, F.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Eur. J. Med. Chem.
2010, 45, 2000–2009; (g) Sahnoun, S.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.;
Alami, M. Tetrahedron Lett. 2008, 49, 7279–7283; (h) Sahnoun, S.; Messaoudi,
S.; Brion, J.-D.; Alami, M. Org. Biomol. Chem. 2009, 7, 4271–4278; (i) Sahnoun,
S.; Messaoudi, S.; Brion, J.-B.; Alami, M. Eur. J. Org. Chem. 2010, 6097–6102.
13. (a) Lee, K.-S.; Lim, Y.-K.; Cho, C.-G. Tetrahedron Lett. 2002, 43, 7463–7467; (b)
Ellames, G. J.; Gibson, J. S.; Herbert, J. M.; McNeill, A. H. Tetrahedron 2001, 57,
9487–9497; (c) Alonso, F.; Radivoy, G.; Yus, M. Tetrahedron 2000, 56, 8673–
8678.
5a
Scheme 2. Palladium-catalyzed synthesis of unsymmetrical N,N0-diaryl-1-amino-
indole 5a. For a general procedure; see Ref. 18.
electron-releasing groups as well as heteroaromatic bromides, suc-
cessfully participated in the reactions affording symmetrically N,N-
diaryl-1-aminoindoles 4a–d in good yields (Scheme 1, 59–83%).
Finally, we examined the Pd-catalyzed synthesis of unsymmet-
rical N,N0-diaryl-1-aminoindoles. In
a typical experiment, we
achieved this transformation by mixing 3a (1 equiv) with 2-bro-
mopyridine (2 equiv) as a partner, Pd2(dba)3/Xantphos as the cata-
lytic system in toluene at 100 °C for 12 h. Thus, under this protocol,
we were pleased to observe that the reaction worked well and pro-
vided the desired product 5a in a 49% yield, despite the fact that
the reaction conditions had never been optimized (Scheme 2).
In conclusion, we successfully described a simple and selective
protocol for the concise synthesis of diversified N-(hetero)aryl-1-
aminoindoles 3 from the corresponding N-aminoindoles and (het-
ero)aryl halides using Pd2(dba)3/Josiphos as the catalytic system.
We also have demonstrated that the use of Xantphos as the ligand
enlarges the scope of this work with the synthesis of symmetrical
N,N0-biaryl 1-aminoindoles 4 in good to excellent yields. Investiga-
tions on further expanding the scope of the method to other re-
lated heterocycles are in progress in our laboratory and will be
reported in due course.
14. (a) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Licandro, E.; Maiorana, S.; Perdicchia,
D. Org. Lett. 2005, 7, 1497–1500; (b) Cacchi, S.; Fabrizi, G.; Goggiamani, A.;
Sgalla, S. Adv. Synth. Catal. 2007, 349, 453–458.
15. General procedure for Pd-catalyzed monocoupling of 1-aminoindoles with various
aryl halides: A flame-dried resealable Schlenk tube was charged with Pd2(dba)3
(0.025 mmol, 2.5 mol %), Josiphos (0.05 mmol, 5 mol %), the solid reactant(s)
(1.0 mmol of the 1-aminoindole, 2.0 mmol of the aryl halide), LiCl (2.0 mmol)
and KOtBu (1.4 mmol). The Schlenk tube was capped with a rubber septum,
evacuated, and backfilled with argon; this evacuation/backfill sequence was
repeated one additional time. The liquid reactant(s) and toluene (2 mL/mmol)
were added through the septum. The septum was replaced with a teflon
screwcap. The Schlenk tube was sealed, and the mixture was stirred at 130 °C
for 3 h. The resulting suspension was cooled to room temperature and filtered
through a pad of celite eluting with ethyl acetate, and the inorganic salts were
removed. The filtrate was concentrated and purification of the residue by silica
gel column chromatography gave the desired product. All the compounds gave
satisfactory spectroscopic data. Data for the selected compounds are given
below:
Acknowledgment
Compound 3a: Yield: 94%; TLC : Rf 0.39 (c-hexane/AcOEt 8:2). IR (neat): 3306,
1604, 1508, 1446, 1359, 1246, 1220, 1112, 1063, 832, 754 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) : d 7.55 (dd, 1H, J = 6.5, 2.3 Hz), 7.25–6.95 (m, 4H), 6.65 (d,
2H, J = 8.9 Hz), 6.42 (d, 1H, J = 3.3 Hz), 6.37 (d, 2H, J = 8.9 Hz), 6.32 (s, 1H), 3.62
(s, 3H).13C NMR (75 MHz, CDCl3) d 154.5, 141.0, 135.9, 128.7, 126.6, 122.3,
121.1, 120.3, 114.7 (2C), 114.2 (2C), 109.5, 100.6, 55.6. m/z MS (ES+) 239.0
(M+H+).
The CNRS is gratefully acknowledged for support of this
research.
References and notes
Compound 3i: Yield: 63%; TLC : Rf 0.40 (c-hexane/AcOEt 8:2). IR (neat): 3326,
1521, 1466, 1236, 1220, 1125, 1103, 832, 754 cmꢀ1 1H NMR (CDCl3, 300 MHz)
;
1. (a) Andersen, K.; Perregaard, J.; Arnt, J.; Bay Nielsen, J.; Begtrup, M. J. Med. Chem.
1992, 35, 4823–4831; (b) Frontana-Uribe, B. A.; Moinet, C.; Toupet, L. Eur. J. Org.
Chem. 1999, 419–430; c Le Ridant, A.; Harpey, C. FR2911143, 2008.; (d) Huger,
F. P.; Smith, C. P.; Kongsamut, S.; Tang, L. U.S. Patent 5, 776, 955, 1998.; (e)
Effland, R. C.; Klein, J. T.; Davis, L.; Olson, G. E. EP0402752, 1990.; (f) Gurkan, A.
S.; Karabay, A.; Buyukbingol, Z.; Adejare, A.; Buyukbingol, E. Arch. Pharm. Chem.
Life Sci. 2005, 338, 67–733; (g) Itoh, T.; Miyazaki, M.; Maeta, H.; Matsuya, Y.;
Nagata, K.; Ohsawa, A. Bioorg. Med. Chem. 2000, 8, 1983–1989.
2. Morin, D.; Zini, A.; Urien, S.; Tillement, J. P. J. Pharmacol. Exp. Ther. 1989, 249,
288–296.
3. (a) Brion, J.-D.; Bintein, F.; Razet, R.; Razon, P.; Renko, Z.-D.; Levoisier, E.; Pujol,
J. F.; Weissmann, D.; Le Ridant, A.; Harpey, C. WO/2007/006922, 2007.; (b)
Brion, J.-D.; Galtier, C.; Hervet, M.; Le Strat, F.; Moreau, A.; Renko, Z.-D.; Le
Ridant, A.; Harpey, C. WO/2008/099082, 2008.
4. (a) Klein, J. T.; Davis, L.; Olsen, G. E.; Wong, G. S.; Huger, F. P.; Smith, C. P.; Petko,
W. W.; Cornfeldt, M.; Wilker, J. C.; Blitzer, R. D.; Landau, E.; Haroutunian, V.;
Martin, L. L.; Effland, R. C. J. J. Med. Chem. 1996, 39, 570–581; (b) Smith, C. P.;
Bores, G. M.; Petko, W.; Li, M.; Selk, D. E.; Rush, D. K.; Camacho, F.; Winslow, J.
T.; Fishkin, R.; Cunningham, D. M.; Brooks, K. M.; Roehr, J.; Hartman, H. B.;
Davis, L.; Vargas, H. M. J. Pharmacol. Exp. Ther. 1997, 280, 710–720.
5. Lafay, J.; Rondot, B.; Bonnet, P.; Clerc, T.; Shields, J.; Duc, I.; Duranti, E.; Puccio,
F.; Blot, C.; Maillos, P. WO/2005/058842, 2005.
6. (a) Somei, M.; Natsume, M. Tetrahedron Lett. 1974, 3605; (b) Somei, M.;
Matsubara, M.; Natsume, M. Chem. Pharm. Bull. 1975, 23, 2891–2898; (c) Shen,
J.-K.; Katayama, H.; Takatsu, N.; Shiro, I. J. Chem. Soc., Perkin Trans. 1 1993,
2087–2097; (d) Melnyk, P.; Gasche, J.; Thal, C. Tetrahedron Lett. 1993, 34, 5449–
5450; (e) Melnyk, P.; Legrand, B.; Gasche, J.; Ducrot, P.; Thal, C. Tetrahedron
1995, 51, 1941–1952.
7. Watanabe, M.; Yamamoto, T.; Nishiyama, M. Angew. Chem., Int. Ed. 2000, 39,
2501–2504.
8. Melkonyan, F.; Topolyan, A.; Yurovskaaya, M.; Karchava, A. Eur. J. Org. Chem.
2008, 5952–5956.
: d 7.79–7.61 (m, 1H), 7.33–7.10 (m, 4H), 6.99–6.83 (m, 2H), 6.55 (dd, 1H,
J = 3.3, 0.7 Hz), 6.54, (br s, 1H), 6.46 (dd, 2H, J = 9.0, 4.4 Hz). 13C NMR (75 MHz,
CDCl3) d 159.4 (d, 1C, JCꢀF = 237.0 Hz), 143.4, 135.6, 128.5, 126.7, 122.5, 121.2,
120.4, 116.0 (d, 2C, JCꢀF = 23.5 Hz), 114.0 (d, 2C, JCꢀF = 8.3 Hz), 109.3, 100.9. m/z
MS (ES+) 227.0 (M+H+).
16. (a) Messaoudi, S.; Tréguier, B.; Hamze, A.; Provot, O.; Peyrat, J.-F.; De Losada, J.
R.; Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.;
Alami, M. J. Med. Chem. 2009, 52, 4538–4542; (b) Hamze, A.; Giraud, A.;
Messaoudi, S.; Provot, O.; Peyrat, J.-F.; Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala,
J.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M. Chem. Med. Chem. 2009, 4, 1912–
1924; (c) Messaoudi, S.; Hamze, A.; Provot, O.; Tréguier, B.; De Losada, J. R.;
Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.;
Alami, M. Chem. Med. Chem. 2011, 6, 488–497.
17. General procedure for Pd-catalyzed synthesis of N,N0-diaryl-1-aminoindoles 4: A
flame-dried resealable Schlenk tube was charged with Pd2(dba)3 (0.025 mmol,
2.5 mol %), Xantphos (0.05 mmol, 5 mol %), the solid reactant(s) (1.0 mmol of
the 1-aminoindole, 2.0 mmol of the aryl halide), LiCl (2.0 mmol) and NaOtBu
(2.8 mmol). The Schlenk tube was capped with a rubber septum, evacuated,
and backfilled with argon; this evacuation/backfill sequence was repeated one
additional time. The liquid reactant(s) and toluene (2 mL per mmol) were
added through the septum. The septum was replaced with a teflon screwcap.
The Schlenk tube was sealed, and the mixture was stirred at 130 °C for 3 h. The
resulting suspension was cooled to room temperature and filtered through a
pad of celite eluting with ethyl acetate, and the inorganic salts were removed.
The filtrate was concentrated and purification of the residue by silica gel
column chromatography gave the desired product. All the compounds gave
satisfactory spectroscopic data. Data for the selected compounds are given
below:
Compound 4a: Yield: 60%; TLC : Rf 0.62 (c-hexane/AcOEt 8:2 IR (neat): 3311,
1608, 1581, 1455, 1368, 1252, 1131, 911, 821 cmꢀ1; NMR (300 MHz) d 7.52 (d,
1H, J = 7.6 Hz), 7.30 (d, 1H, J = 9.0 Hz), 7.15 (d, 1H, J = 3.4 Hz), 7.10–6.99 (m,
2H), 6.79 (d, 4H, J = 8.9 Hz), 6.66 (d, 4H, J = 8.9 Hz), 6.45 (d, 1H, J = 3.4 Hz), 3.62
(s, 3H), 3.61 (s, 3H). 13C NMR (75 MHz, CDCl3) d 155.6 (2C), 139.8 (2C), 135.6,
9. Halland, N.; Nazare, M.; Alonso, J.; R’kyek, O.; Lindenschmidt, A. Chem.
Commun. 2011, 47, 1042–1044.